OpenUniversiteitNederland

Using Strategies for Assessment

of
Functional Programming Exercises

Alex Gerdes

Joint work with Johan Jeuring and Bastiaan Heeren

Open Universiteit Nederland
School of Computer Science

8 January 2010



Assessment of programming exercises

» Every year, thousands of computer science students learn
to program

» |t is important to assess the students abilities and to
provide timely feedback

» Traditionally, a teacher assesses programming exercises

» Assessing is tedious, time consuming, and error prone
work

» Many assessment tools have been developed to assist
teachers

» Most tools are based on testing



Disadvantages of test-based assessment

Test-based assessment tools try to determine correctness by
comparing the output of a student program to the expected
results. Test-based assessment has a number of disadvantages:

1. Coverage: how do you know you have tested enough?

2. Testing is a dynamic process and therefore vulnerable to
bugs

3. Inability to assess design features, such as good
programming practices

4. Testing cannot reveal which algorithm has been used



Example

A small exercise, typical for learning how to program in
Haskell, is to write a function that converts a list of binary
numbers to its decimal representation:

fromBin [1,0,1,0,1,0]
= 42

The following definition that implements this function:

fromBin :: [Int] — Int
fromBin = fromBin' 2

fromBin’ n [] =0
fromBin' n (x:xs) = xxn " (length (x:xs) — 1)
+ fromBin' n xs




Example

Test-based assessment tools will most likely accept the
solution. However, it contains a number of imperfections:

» The length calculation is inefficient
» |t takes time quadratic in the size of the input list

» Argument n is constant and should be abstracted

We found these imperfections frequently in a set of student
solutions.

fromBin :: [Int] — Int
fromBin = fromBin' 2

fromBin’ n [] =0
fromBin' n (x:xs) = x*n A (length (x:xs) —1)

8 + fromBin’ n xs




Our solution (1/2)

We propose to use strategies in combination with program
transformations based on the A-calculus, to assess program-
ming exercises

» A programming strategy is derived from a set of model
solutions

» We generate a set of equivalent solutions based on a
programming strategy

» Strategies do not generate all equivalent solutions

» We increase the number of accepted correct solutions by
normalisation

» After normalisation, we compare solutions syntactically



Our solution (2/2)

We assess the following features:

» Correctness

» Design
Our approach has the following advantages:

» If a program is determined to be equivalent, it is
guaranteed to be correct

» We can recognise and report imperfections
» We can determine which algorithm has been implemented
» Strategy-based assessment is carried out statically.

A disadvantage of our approach is that we cannot prove a
8 student solution to be incorrect.



Example assessment

» We applied our tool to student solutions from a lab
assignment in a first-year FP-course at Utrecht University
> In total we received 94 student solutions

» We were not involved in any aspect of the assignment

The students had to implement the fromBin function.



Model solutions (1/2)

There are a number of model solutions, which differ quite a bit
from one another. All of them use recommended programming
techniques:

| fromBin = foldl ((+) o (2%)) O

fromBin xs = fromBin' (length xs — 1) xs
where
fromBin’ _[] =0
fromBin' 1 (x:xs) = x %2\ + fromBin’ (I —1) xs

| fromBin = sum o zipWith (x) (iterate (¥2) 1) o reverse



Model solutions (2/2)

The last model solution we consider is simple, but inefficient:

fromBin [] =0
fromBin (x: xs) = x * 2\ length xs + fromBin xs

The length of the list is calculated in each recursive call. A
teacher can:

» Accept or reject this solution

» Turn the model solution into a buggy strategy and report
to the student why their solution is rejected



Example

We can recognise many different equivalent solutions from a
model solution. For example, the following student solution:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN' b (reverse n)
where
fromBaseN" _ [] =0
fromBaseN' b’ (c:cs) =c+ b’ * (fromBaseN' b’ cs)

is recognised from this model solution:

| fromBin = foldl ((4) o (2%)) 0



Categories

We have partitioned the set of student programs into four
categories by hand:

Good. A proper solution with respect to the features

Modified. Some students have augmented their solution

with sanity checks. We have removed the checks
by hand

Imperfect. An imperfect program is a program that is
rejected because we want to report the
imperfection

Incorrect. A few student programs were incorrect



Results

72 programs fall into the good and modified (9)
categories; our assessment tool recognises 64 programs
(89%)

The acceptance rate can be increased by adding more
model solutions

All of the incorrect and imperfect programs were rejected
Some programs that were rejected with reason had gotten
full grades from the assistant

We can tell which model solution a student has used:

vV V. v Vv

18 students used the foldl model solution

2 used tupling

4 the inner product solution

40 solutions were based on explicit recursion






Strategies

v

A strategy is a well-defined plan for solving a particular
problem

A programming strategy is implemented as a context-free
grammar with refinement rules as symbols

We have developed a library with an embedded
domain-specific language for specifying strategies
Strategies can also be used to detect common mistakes.
These are called buggy strategies

Programming strategies can be automatically derived
from model solutions



Standard strategies

» We have defined a set of standard programming strategies

» Standard strategies generate many syntactically different
solutions from a single model solution

» The automatically derived programming strategies are
defined in terms of these standard strategies.

For example, using the strategy for function composition:
|fog:>\xﬂf(gx)
We can recognise both composition itself, and its definition:

fromBin = foldl ((4) o (2%)) 0
fromBin = foldl (Axy — 2+x+y) 0




Program transformations

» Strategies from model solutions are rather strict and may
reject equivalent but only slightly different programs

» Some of these differences cannot or should not be
captured in a strategy, such as inlining a helper-function

» We use program transformations, which are based on the
A-calculus, to ignore such differences

» We use n- and B-reduction, and a-conversion

» Additionally, we perform preprocessing rewrite steps such
as inlining

» In general, comparing two lambda terms for equality is
undecidable. However, we did not encounter any problems



Normalisation

Normalisation is performed using the following rewrite steps:

1. a-conversion

2. preprocessing steps

optimise constant arguments

inlining: replace an expression by its definition
rewrite infix notation to prefix

rewrite a where to a let

vV VY vV VY

3. B- and 7m-reduction



Normalisation example

Recall the student program we have introduced before:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN' b (reverse n)
where
fromBaseN" _ [] =0
fromBaseN' b’ (c:cs) = ¢+ b’ x (fromBaseN' b’ cs)

After applying all transformations the student program looks
as follows:

fromBin = Xxp —

let x3 [] =0
x3 (xg:x5) = (+) ((*) 2 (x3 x5)) x4
in x3 (reverse x;)



Future work

» Use programming strategies to generate semantically rich
feedback. However, program transformations complicate
this generation. We want to investigate how we can
alleviate this problem

» Investigate how well our approach works for developing
programs in programming languages like Java or C++

» Investigate how we can extend our approach with testing,
property checking, or static contract checking



Epilogue

Strategies can be successfully used for programming
exercise assessment

We can guarantee a student solution to be equivalent to a
model solution

We are able to recognise many different student programs
from a limited set of model solutions

Using only 4 model solutions we managed to recognise
and characterise 89% of the correct solutions

Information about our research: http://ideas.cs.uu.nl

E-mail: alex.gerdes@ou.nl


http://ideas.cs.uu.nl
mailto:alex.gerdes@ou.nl

	Details of our approach

