
Using Strategies for Assessment
of

Functional Programming Exercises

Alex Gerdes
Joint work with Johan Jeuring and Bastiaan Heeren

Open Universiteit Nederland
School of Computer Science

8 January 2010

Assessment of programming exercises

I Every year, thousands of computer science students learn
to program

I It is important to assess the students abilities and to
provide timely feedback

I Traditionally, a teacher assesses programming exercises
I Assessing is tedious, time consuming, and error prone

work
I Many assessment tools have been developed to assist

teachers
I Most tools are based on testing

Disadvantages of test-based assessment

Test-based assessment tools try to determine correctness by
comparing the output of a student program to the expected
results. Test-based assessment has a number of disadvantages:

1. Coverage: how do you know you have tested enough?

2. Testing is a dynamic process and therefore vulnerable to
bugs

3. Inability to assess design features, such as good
programming practices

4. Testing cannot reveal which algorithm has been used

Example

A small exercise, typical for learning how to program in
Haskell, is to write a function that converts a list of binary
numbers to its decimal representation:

fromBin [1, 0, 1, 0, 1, 0]⇒ 42

The following definition that implements this function:

fromBin :: [Int] → Int
fromBin = fromBin ′ 2

fromBin ′ n [] = 0
fromBin ′ n (x : xs) = x ∗ n ∧ (length (x : xs) − 1)

+ fromBin ′ n xs

Example
Test-based assessment tools will most likely accept the
solution. However, it contains a number of imperfections:

I The length calculation is inefficient
I It takes time quadratic in the size of the input list
I Argument n is constant and should be abstracted

We found these imperfections frequently in a set of student
solutions.

fromBin :: [Int] → Int
fromBin = fromBin ′ 2

fromBin ′ n [] = 0
fromBin ′ n (x : xs) = x ∗ n ∧ (length (x : xs) − 1)

+ fromBin ′ n xs

Our solution (1/2)

We propose to use strategies in combination with program
transformations based on the λ-calculus, to assess program-
ming exercises

I A programming strategy is derived from a set of model
solutions

I We generate a set of equivalent solutions based on a
programming strategy

I Strategies do not generate all equivalent solutions
I We increase the number of accepted correct solutions by

normalisation
I After normalisation, we compare solutions syntactically

Our solution (2/2)

We assess the following features:

I Correctness
I Design

Our approach has the following advantages:

I If a program is determined to be equivalent, it is
guaranteed to be correct

I We can recognise and report imperfections
I We can determine which algorithm has been implemented
I Strategy-based assessment is carried out statically.

A disadvantage of our approach is that we cannot prove a
student solution to be incorrect.

Example assessment

I We applied our tool to student solutions from a lab
assignment in a first-year FP-course at Utrecht University

I In total we received 94 student solutions
I We were not involved in any aspect of the assignment

The students had to implement the fromBin function.

Model solutions (1/2)

There are a number of model solutions, which differ quite a bit
from one another. All of them use recommended programming
techniques:

fromBin = foldl ((+) ◦ (2∗)) 0

fromBin xs = fromBin ′ (length xs − 1) xs
where

fromBin ′ [] = 0
fromBin ′ l (x : xs) = x ∗ 2 ∧ l + fromBin ′ (l − 1) xs

fromBin = sum ◦ zipWith (∗) (iterate (∗2) 1) ◦ reverse

Model solutions (2/2)

The last model solution we consider is simple, but inefficient:

fromBin [] = 0
fromBin (x : xs) = x ∗ 2 ∧ length xs + fromBin xs

The length of the list is calculated in each recursive call. A
teacher can:

I Accept or reject this solution
I Turn the model solution into a buggy strategy and report

to the student why their solution is rejected

Example

We can recognise many different equivalent solutions from a
model solution. For example, the following student solution:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN ′ b (reverse n)

where
fromBaseN ′ [] = 0
fromBaseN ′ b ′ (c : cs) = c + b ′ ∗ (fromBaseN ′ b ′ cs)

is recognised from this model solution:

fromBin = foldl ((+) ◦ (2∗)) 0

Categories

We have partitioned the set of student programs into four
categories by hand:

Good. A proper solution with respect to the features

Modified. Some students have augmented their solution
with sanity checks. We have removed the checks
by hand

Imperfect. An imperfect program is a program that is
rejected because we want to report the
imperfection

Incorrect. A few student programs were incorrect

Results

I 72 programs fall into the good and modified (9)
categories; our assessment tool recognises 64 programs
(89%)

I The acceptance rate can be increased by adding more
model solutions

I All of the incorrect and imperfect programs were rejected
I Some programs that were rejected with reason had gotten

full grades from the assistant

We can tell which model solution a student has used:

I 18 students used the foldl model solution
I 2 used tupling
I 4 the inner product solution
I 40 solutions were based on explicit recursion

Details of our approach

Strategies

I A strategy is a well-defined plan for solving a particular
problem

I A programming strategy is implemented as a context-free
grammar with refinement rules as symbols

I We have developed a library with an embedded
domain-specific language for specifying strategies

I Strategies can also be used to detect common mistakes.
These are called buggy strategies

I Programming strategies can be automatically derived
from model solutions

Standard strategies

I We have defined a set of standard programming strategies
I Standard strategies generate many syntactically different

solutions from a single model solution
I The automatically derived programming strategies are

defined in terms of these standard strategies.

For example, using the strategy for function composition:

f ◦ g = λx → f (g x)

We can recognise both composition itself, and its definition:

fromBin = foldl ((+) ◦ (2∗)) 0
fromBin = foldl (λx y → 2 ∗ x + y) 0

Program transformations

I Strategies from model solutions are rather strict and may
reject equivalent but only slightly different programs

I Some of these differences cannot or should not be
captured in a strategy, such as inlining a helper-function

I We use program transformations, which are based on the
λ-calculus, to ignore such differences

I We use η- and β-reduction, and α-conversion
I Additionally, we perform preprocessing rewrite steps such

as inlining
I In general, comparing two lambda terms for equality is

undecidable. However, we did not encounter any problems

Normalisation

Normalisation is performed using the following rewrite steps:

1. α-conversion
2. preprocessing steps

I optimise constant arguments
I inlining: replace an expression by its definition
I rewrite infix notation to prefix
I rewrite a where to a let
I ...

3. β- and η-reduction

Normalisation example

Recall the student program we have introduced before:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN ′ b (reverse n)

where
fromBaseN ′ [] = 0
fromBaseN ′ b ′ (c : cs) = c + b ′ ∗ (fromBaseN ′ b ′ cs)

After applying all transformations the student program looks
as follows:

fromBin = λx2 →
let x3 [] = 0

x3 (x4 : x5) = (+) ((∗) 2 (x3 x5)) x4
in x3 (reverse x2)

Future work

I Use programming strategies to generate semantically rich
feedback. However, program transformations complicate
this generation. We want to investigate how we can
alleviate this problem

I Investigate how well our approach works for developing
programs in programming languages like Java or C++

I Investigate how we can extend our approach with testing,
property checking, or static contract checking

Epilogue

I Strategies can be successfully used for programming
exercise assessment

I We can guarantee a student solution to be equivalent to a
model solution

I We are able to recognise many different student programs
from a limited set of model solutions

I Using only 4 model solutions we managed to recognise
and characterise 89% of the correct solutions

I Information about our research: http://ideas.cs.uu.nl

I E-mail: alex.gerdes@ou.nl

http://ideas.cs.uu.nl
mailto:alex.gerdes@ou.nl

	Details of our approach

