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Designing Hardware

• Behavioral descriptions:

• What the hardware does

• Structural descriptions:

• How the hardware does it
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`Holy Grail’

• Algorithms often described as a set of 
mathematical equations

• `Holy Grail’ Hardware descriptions:

• Input: Mathematical equation

• Output: Perfect Hardware
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Hardware & Functional 
Languages

• Calculate: 

• Just like functional languages, there is no pre-
ordained order in combinatorial hardware.

• Just like functional languages, operations in 
hardware can happen in parallel. 

• Parallel execution is default in hardware!
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2 ∗ 3+ 3∗ 4



Purity & State

• Purity: Same arguments, Same result

• Hardware has State... 

• How do we make pure hardware 
description that have state?
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State
macc (State s) (a,b) 
      = let sum = s + a * b
        in  (State sum, sum) 
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Simulation

• Simulation is easy: 

• Map hardware over series of input variables, 
using State as accumulator
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run f s (i:is) = o : (run f s’ is)
where
(s’,o) = f s i



FIR filter
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y = x

• h


x0 x1 x2 x3 x4 x5 x6 ...
h0 h1 h2 h3

Dot-product:

Applied to a stream of values:

→



FIR filter
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fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where 
hs = [2,3,-2,4]

pxs : Previous x’s (state)
x : New input value

hs : Coefficients
pxs<++x : Remember new x, remove oldest
pxs**hs : dot-product
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pxs <++ x = tail pxs ++ [x]
pxs ** hs = foldl (+) 0 (zipWith (*) pxs hs)



CλaSH

• We want to translate a functional 
description to hardware.

• Hardware is usually represented by a netlist, 
a series of components connected by wires.

• We translate Haskell to VHDL, an existing 
hardware description language with available 
tooling. 
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CλaSH

• Not all of Haskell has a direct 
correspondence with hardware:

• Infinite Lists

• Dynamic Lists

• Recursion

• etc.

• This means there are certain restrictions
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CλaSH

• CAES Language for Synchronous Hardware

• (Mostly) structural descriptions of hardware 
for synchronous hardware.

• Structural properties are not inferred, but 
have to be specified by the hardware 
designer.
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FIR in CλaSH

type Word = SizedInt D16
type Vec4 = Vector D4 Word

fir :: State Vec4 -> Word -> (State Vec4, Word)
fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where 
hs = ([2,3,-2,4] :: Vec4)
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FIR in CλaSH

type Word = SizedInt D16
type Vec4 = Vector D4 Word
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•  hs actually has to be specified as such:



FIR in CλaSH

type Word = SizedInt D16
type Vec4 = Vector D4 Word

fir :: State Vec4 -> Word -> (State Vec4, Word)
fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where 
hs = ([2,3,-2,4] :: Vec4)

hs = $(vectorTH [2::Word,3,-2,4])
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•  hs actually has to be specified as such:



Vectors

• The size of the vector is part of the type:

• Unconstrained Vector type:

• Example of Constrained Vector type:

NaturalT n => Vector n a 

Vector D4 a 
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Compilation Pipeline
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Haskell GHC (front-end)⎯ →⎯⎯⎯⎯⎯⎯⎯ Core

Normalization⎯ →⎯⎯⎯⎯⎯⎯ Core

Back-end⎯ →⎯⎯⎯⎯ VHDL

Synthesis Tool⎯ →⎯⎯⎯⎯⎯⎯ Netlist



Normalization

• Normalization: apply transformations until 
description is in normal form. 

• A reduction system

• Around 20 transformation rules

• Properties such as Termination, Church-
Rosser are assumed and likely, but not yet 
proven.
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Why normalization?

• Netlist: components connected by wires

• Core does not always correspond directly 
to a netlist

• Example problem:  What is the name of the 
output port of the following function?
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square x = x * x



Why normalization?

20

square x = x * x
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Transformation
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func =    E
func =    let res = E in res

square x =   x * x
square x =   let res = x * x in res

E has no name



Normal form

• Square is now in normal form:

 

square
Entity
 

x
input port
 = let res = x ∗ x

Architecture
 

 in res
output port


square :: SizedInt D16 -> SizedInt D16



VHDL

entity square is 
port (x   :  in signed (0 to 15);
      res : out signed (0 to 15));

end entity square;

architecture structural of square is
begin
res = resize(x * x, 16);

end architecture structural;
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square :: SizedInt D16 -> SizedInt D16

 

square
Entity
 

x
input port
 = let res = x ∗ x

Architecture
 

 in res
output port




Problems

• Dependent types in Haskell are fake, only 
possible through certain extensions to the 
language.

• At times, we need to prove and add 
invariants, such as commutativity of addition.

• Haskell lacks proper support for specifying 
such invariants and their proofs.
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Consequences

• Invariants can only be incorporated through 
term-level proof builders, which are 
cumbersome in use.

• Invariants usually come into play when 
dealing with the specification of recursive 
functions.

• We chose not to expose this need for 
proofs to a developer.
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Consequences

• As proof builders are not supported, 
developers can not specify recursive 
functions!

• Temporary solution: (Limited) set of 
recursive vector transformations are 
compiled using predefined VHDL templates.

26



Summary

• CλaSH has a solid base

• Lots of work to be done

• Will be used in courses on HW design, and 
as such hopefully attract many master 
students
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Thanks


