
From Haskell To
Hardware

Matthijs Kooijman, Christiaan Baaij & Jan Kuper





Designing Hardware

• Behavioral descriptions:

• What the hardware does

• Structural descriptions:

• How the hardware does it

2

`Holy Grail’

• Algorithms often described as a set of
mathematical equations

• `Holy Grail’ Hardware descriptions:

• Input: Mathematical equation

• Output: Perfect Hardware

3

Hardware & Functional
Languages

• Calculate:

• Just like functional languages, there is no pre-
ordained order in combinatorial hardware.

• Just like functional languages, operations in
hardware can happen in parallel.

• Parallel execution is default in hardware!

4

2 ∗ 3+ 3∗ 4

Purity & State

• Purity: Same arguments, Same result

• Hardware has State...

• How do we make pure hardware
description that have state?

5

State



















A B Out

1 1 1

1 2 3

1 1 4

2 2 8

6

State
macc (State s) (a,b)
 = let sum = s + a * b
 in (State sum, sum)






















A B S Out

1 1 0 1

1 2 1 3

1 1 3 4

2 2 4 8
7

Simulation

• Simulation is easy:

• Map hardware over series of input variables,
using State as accumulator

8

run f s (i:is) = o : (run f s’ is)
where
(s’,o) = f s i

FIR filter

9

y = x

• h


x0 x1 x2 x3 x4 x5 x6 ...
h0 h1 h2 h3

Dot-product:

Applied to a stream of values:

→

FIR filter

10

fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where
hs = [2,3,-2,4]

pxs : Previous x’s (state)
x : New input value

hs : Coefficients
pxs<++x : Remember new x, remove oldest
pxs**hs : dot-product

11

pxs <++ x = tail pxs ++ [x]
pxs ** hs = foldl (+) 0 (zipWith (*) pxs hs)

CλaSH

• We want to translate a functional
description to hardware.

• Hardware is usually represented by a netlist,
a series of components connected by wires.

• We translate Haskell to VHDL, an existing
hardware description language with available
tooling.

12

CλaSH

• Not all of Haskell has a direct
correspondence with hardware:

• Infinite Lists

• Dynamic Lists

• Recursion

• etc.

• This means there are certain restrictions

13

CλaSH

• CAES Language for Synchronous Hardware

• (Mostly) structural descriptions of hardware
for synchronous hardware.

• Structural properties are not inferred, but
have to be specified by the hardware
designer.

14

FIR in CλaSH

type Word = SizedInt D16
type Vec4 = Vector D4 Word

fir :: State Vec4 -> Word -> (State Vec4, Word)
fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where
hs = ([2,3,-2,4] :: Vec4)

15

FIR in CλaSH

type Word = SizedInt D16
type Vec4 = Vector D4 Word

fir :: State Vec4 -> Word -> (State Vec4, Word)
fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where
hs = ([2,3,-2,4] :: Vec4)

15

• hs actually has to be specified as such:

FIR in CλaSH

type Word = SizedInt D16
type Vec4 = Vector D4 Word

fir :: State Vec4 -> Word -> (State Vec4, Word)
fir (State pxs) x = (State (pxs<++x), pxs ** hs)
where
hs = ([2,3,-2,4] :: Vec4)

hs = $(vectorTH [2::Word,3,-2,4])
15

• hs actually has to be specified as such:

Vectors

• The size of the vector is part of the type:

• Unconstrained Vector type:

• Example of Constrained Vector type:

NaturalT n => Vector n a

Vector D4 a

16

Compilation Pipeline

17

Haskell GHC (front-end)⎯ →⎯⎯⎯⎯⎯⎯⎯ Core

Normalization⎯ →⎯⎯⎯⎯⎯⎯ Core

Back-end⎯ →⎯⎯⎯⎯ VHDL

Synthesis Tool⎯ →⎯⎯⎯⎯⎯⎯ Netlist

Normalization

• Normalization: apply transformations until
description is in normal form.

• A reduction system

• Around 20 transformation rules

• Properties such as Termination, Church-
Rosser are assumed and likely, but not yet
proven.

18

Why normalization?

• Netlist: components connected by wires

• Core does not always correspond directly
to a netlist

• Example problem: What is the name of the
output port of the following function?

19

square x = x * x

Why normalization?

20

square x = x * x





 

Transformation

21

func = E
func = let res = E in res

square x = x * x
square x = let res = x * x in res

E has no name

Normal form

• Square is now in normal form:

square
Entity
 

x
input port
 = let res = x ∗ x

Architecture
 

 in res
output port


square :: SizedInt D16 -> SizedInt D16

VHDL

entity square is
port (x : in signed (0 to 15);
 res : out signed (0 to 15));

end entity square;

architecture structural of square is
begin
res = resize(x * x, 16);

end architecture structural;

23

square :: SizedInt D16 -> SizedInt D16

square
Entity
 

x
input port
 = let res = x ∗ x

Architecture
 

 in res
output port


Problems

• Dependent types in Haskell are fake, only
possible through certain extensions to the
language.

• At times, we need to prove and add
invariants, such as commutativity of addition.

• Haskell lacks proper support for specifying
such invariants and their proofs.

24

Consequences

• Invariants can only be incorporated through
term-level proof builders, which are
cumbersome in use.

• Invariants usually come into play when
dealing with the specification of recursive
functions.

• We chose not to expose this need for
proofs to a developer.

25

Consequences

• As proof builders are not supported,
developers can not specify recursive
functions!

• Temporary solution: (Limited) set of
recursive vector transformations are
compiled using predefined VHDL templates.

26

Summary

• CλaSH has a solid base

• Lots of work to be done

• Will be used in courses on HW design, and
as such hopefully attract many master
students

27

Thanks

