
Automatic datatype 
versioning

An adventure in Ocaml, generic programming and 
preprocessors.

Alexey Rodriguez Yakushev
Vector Fabrics

FP-dag, Nijmegen, January 8, 2010

1

1Sunday, January 10, 2010



Vector Fabrics

• Produces an embedded systems compiler: 
C to hardware + software.

• The compiler itself is written in Ocaml.

2

2Sunday, January 10, 2010



Data persistence

• Two styles:

• File format.

• Design format and 
code reader/writer.

• Marshaling.

• (Semi)automatic from 
data definitions.

Compiler 
toolchain

modules
.o

interfaces
.hiprofiling

results
.prof

Stability

Flexibility

3

3Sunday, January 10, 2010



Version mismatch
(marshaling)

Compiler
rev. 10 stored data

rev. 10type var = string
var_field : “foobar”

type var = int

Compiler
rev. 11

4

4Sunday, January 10, 2010



• Vector fabrics: 8 active developers, 50 
patches a day.

• Conservative: regenerate files on every 
code update. Very time consuming.

• Practical: do not regenerate and hope for 
the best.

How serious is the 
problem?

5

5Sunday, January 10, 2010



How to deal with marshaling 
and evolving datatypes in an 
automatic and non-invasive 
way?

6

6Sunday, January 10, 2010



Designing a solution

7

7Sunday, January 10, 2010



Meta-data

Program
Data

Meta-dataMeta-data

compare before unmarshaling

8

What meta-data to use?

8Sunday, January 10, 2010



Type graph as meta-
data

• Store type graph as 
meta-data.

• Version checking is 
structural comparison.

• May be used for 
backward compatibility.

type module = ... expr ...

type expr = ... expr ...

9

9Sunday, January 10, 2010



Hashing as meta-data

• Only version checking.

• Efficient.

• Collisions not likely. 
Also, no attackers.

• Pay attention to 
transitivity.

657f221745af279dcadfb...

perform hashing on type graph

10

10Sunday, January 10, 2010



Strategy

• Build type graph.

• Compute the MD5 hash of the graph.

• Use hash for version checking.

11

11Sunday, January 10, 2010



Implementation

12

12Sunday, January 10, 2010



Tools

• Ocaml.

• CamlP4 (Ocaml preprocessor).

• Jane Street Capital’s type-conv (CamlP4 
plugin).

13

13Sunday, January 10, 2010



Hashing at compile 
time

CamlP4 Ocaml
.ml .ml

hash

Compiled 
program

hash

Build type graph 
and compute hash

Can use hash for 
version checkingDoes not work due to separate compilation!

14

14Sunday, January 10, 2010



Separate compilation

CamlP4 Ocaml
.ml .ml

hash

Compiled 
program

hash

.ml

type t = ..r..

type r = ...

type reference

Graph is incomplete: 
would not detect 

changes to r

CamlP4 
processes a 

module at a time.

15

15Sunday, January 10, 2010



Hashing at runtime

CamlP4 Ocaml
.ml

.ml

type t = ..r..

type r = ...

CamlP4

.ml

.ml

build partial 
graphs

cross-module 
reference

Compiled 
program

can generate 
hash at 
runtime

16

16Sunday, January 10, 2010



Computing the hash
remove 

recursion 
cycles

pretty print 
each node and 

hash

print includes 
hashes of children 

(transitivity)
lazy evaluation 

avoids 
recomputation

657f221745af279dcadfb...

17

17Sunday, January 10, 2010



Results

• Used daily with 120,000 lines of Ocaml 
code and 2890 datatypes (1/5 marshaled).

• Supports polymorphic datatypes, functors, 
mutual recursion, ADTs.

• Shows where the difference is located (part 
of type-graph is stored).

18

18Sunday, January 10, 2010



Shortcomings

• Error messages can be hard to understand 
at first.

• Harder to integrate with other tools 
(ocamldoc, ocamltags).

19

19Sunday, January 10, 2010



Future work

• Open source the hashing framework.

• Implement backward compatible 
unmarshaling.

20

20Sunday, January 10, 2010



Related work

• Jane St. Capital’s Type-conv & Bin_prot [1].

• Generic programming: PolyP, GH, Clean.

• GHC: ABI checking with MD5.

• Java serialization.

[1] http://www.janestcapital.com/ocaml/index.html

21

21Sunday, January 10, 2010

http://www.janestcapital.com/ocaml/index.html
http://www.janestcapital.com/ocaml/index.html


Student projects

• Declarative graph rewriting (Vali 
Georgescul).

• Automatic generation of C programs.

• Distributed memory utilization in dedicated 
embedded systems.

22

22Sunday, January 10, 2010



Conclusions

• Successful automatic and seamless version 
control of datatypes based on CamlP4. 

23

23Sunday, January 10, 2010


