The Problem of the Dutch National Flag

Wouter Swierstra Vector Fabrics

FP Dag 2010

There is a row of buckets numbered from 1 to n. It is given that:

- each bucket contains one pebble
- each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch national flag.

A Discipline of Programming, E.W. Dijkstra

Specification

- The mini-computer supports two commands:
- swap (i,j) exchanges the pebbles in buckets numbered i and j for $I \leq i, j \leq n$;
- read (i) returns the colour of the pebble in bucket number ifor $I \leq i \leq n$.
- Solution should use one pass only and constant memory.

The Problem of the Dutch National Flag

Wouter Swierstra AIM X

The Problem of the National Flag

I Wouter Swierstra AIM X

Known to
be white \uparrow

Known to
be white \uparrow

\square

个nown to be red

Known to
be white \uparrow

\square

个nown to be red

Known to
be white \uparrow
Known to be red

Known to
be white \uparrow
Known to be red

Known to
be white \uparrow
Known to be red

Known to
be white \uparrow
Known to be red

Known to
be white \uparrow

Known to be red

Known to
be white \uparrow

Known to be red

Known to
be white $\begin{gathered}\text { Known to } \\ \text { be red }\end{gathered}$

Verified Solution

- Implement the mini-computer in the dependently typed language Agda;
- Write a total solution for the Problem of the Dutch National Flag;
- Formally prove our solution is correct.

Pebbles and Buckets

data Pebble : Set where
Red : Pebble
White : Pebble
data Buckets : Nat -> Set where
Nil : Buckets Zero
Cons : Pebble -> Buckets n -> Buckets (Succ n)

Indices

data Fin : Nat -> Set where
Fz: Fin (Succ n)
Fs : Fin $n \rightarrow$ Fin (Succ n)

Indices

data Fin : Nat -> Set where

$$
\begin{aligned}
& \text { Fz : Fin (Succ } n \text {) } \\
& \text { Fs : Fin } n ~->~ F i n ~(S u c c ~ \\
& \text {) })
\end{aligned}
$$

The state monad

State : Nat -> Set -> Set
State n a $=$
Buckets n
-> Pair a (Buckets n)

Reading

read : Fin n -> State n Pebble read i bs = (bs ! i , bs)
where
(Cons p ps) ! Fz = p
(Cons p ps) ! (Fs i) = ps ! i

Swap

swap : Fin n -> Fin n
-> State n Unit
swap i j =
read $i \gg=\backslash p i->$
read j >>= \pj $->$
write i pj >>
write j pi

Back to the problem

An approximation

sort : : Int -> Int -> IO () sort w r =
if $w=r$ then return ()
else case read w of
White -> sort (w + 1) r Red -> swap w r >>
sort w (r - 1)

An approximation

sort : : Int -> Int $\boldsymbol{H} \mathbf{S}$ sort w r =
if whores

$$
\text { sort w }(r-1)
$$

An approximation

sort :: Int -> Int -> IO ()
sort r w =
if $\mathrm{r}=\mathrm{w}$ then return ()
else case read r of

$$
\begin{aligned}
& \text { White }->\text { sort }(w+1) r \\
& \text { Red }->\text { swap } r \text { w } \gg \\
& \text { sort w (r - 1) }
\end{aligned}
$$

An approximation

sort : : Int -> Int -> IO () so Only terminates
if r if $\mathbf{w}^{\boldsymbol{l}} \leq \mathbf{r}^{\text {return (}}$ else case read r of

$$
\begin{aligned}
& \text { White }->\operatorname{sort~}(\mathrm{w}+1) \mathrm{r} \\
& \text { Red }->\operatorname{swap} \mathrm{w} \text { w } \\
& \text { sort w (r - 1) }
\end{aligned}
$$

Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
if $r==$ w then return ()
else case read r of
White $->\operatorname{sort}(w+1)$ w Red -> swap r w >>

$$
\operatorname{sortr}(r-1)
$$

Two problems

- We need to increment and decrement inhabitants of Fin n ;
- We need to prove that our algorithm terminates.

Fs : Fin n -> Fin (Succ n)

Injection

inj : Fin n -> Fin (Succ n)
inj $\mathrm{Fz}=\mathrm{Fz}$
inj (Fs i) = Fs (inj i)

Fs or inj

Idea

- Only increment the image of inj;
- Only decrement the image of Fs.

Difference

data Diff : (i j : Fin n) -> Set where
Base : (i : Fin (Succ n) -> Diff i i Step : (i j : Fin n) ->

Diff i j -> Diff (inj i) (Fs j)

Sort - Base case

sort : (w r : Fin n) ->
Diff w r ->
State n Unit
sort i i Base $=$ return unit

sort : (w r : Fin n) ->
Diff w r ->
State n Unit
sort (inj w) (Es r) (Step w r p)
$=$ read (in w) >>= \p ->
case p of
White -> sort (Es w) (Fr r) ?
Red ->

> swap (in w) (Es r) >> sort (in w) (in r) ?

Lemmas

- We need to prove a few useful lemmas:
- Diff i j -> Diff (Fs i) (Fs j)
- Diff i j -> Diff (inj i) (inj j)

Verification

Verification

the easy part

Correctness Theorem

forall (h : Buckets n) (w r : Fin n), (p : Diff w r) ->
(forall i -> i < w -> h ! i == White) ->
(forall i -> $\mathrm{r}<\mathrm{i}->\mathrm{h}$! i == Red) ->
exists (m : Fin n),
let $h^{\prime}=$ sort $w r p h i n$
forall i -> i < m -> h' ! i == White
\&\& forall i -> i > m -> h' ! i == Red)

Proof sketch

- Proof proceeds by induction on Diff
- Distinguish three cases:
- Base case (trivial);
- No swap happens (not too hard);
- Swap happens (a bit trickier).
- In the latter two cases, we establish the invariant holds and make a recursive call.

Conclusions

- It is possible to reason about "impure" computations using Agda;
- A simple algorithm leads to simple proofs.

