
The Problem of the
Dutch National Flag

Wouter Swierstra
Vector Fabrics

FP Dag 2010

1

There is a row of buckets numbered from 1 to n. It is
given that:

• each bucket contains one pebble

• each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of
buckets and has to be programmed in such a way that
it will rearrange (if necessary) the pebbles in the order
of the Dutch national flag.

A Discipline of Programming, E.W. Dijkstra

2

Specification

• The mini-computer supports two
commands:

• swap (i,j) exchanges the pebbles in buckets
numbered i and j for 1 ≤ i,j ≤ n;

• read (i) returns the colour of the pebble in
bucket number i for 1 ≤ i ≤ n.

• Solution should use one pass only and
constant memory.

3

The Problem of the
Dutch National Flag

Wouter Swierstra
AIM X

4

The Problem of the
Dutch National Flag

Wouter Swierstra
AIM XIndonesian

4

5

Known to
be white

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Known to
be white

Known to
be red

5

Verified Solution

• Implement the mini-computer in the
dependently typed language Agda;

• Write a total solution for the Problem of the
Dutch National Flag;

• Formally prove our solution is correct.

6

Pebbles and Buckets
data Pebble : Set where
 Red : Pebble
 White : Pebble

data Buckets : Nat -> Set where
 Nil : Buckets Zero
 Cons : Pebble -> Buckets n ->
 Buckets (Succ n)

7

Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)

8

Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)

0 1 2 3

Fs

8

The state monad

State : Nat -> Set -> Set

State n a =

 Buckets n

 -> Pair a (Buckets n)

9

Reading

read : Fin n -> State n Pebble

read i bs = (bs ! i , bs)

 where

 (Cons p ps) ! Fz = p

 (Cons p ps) ! (Fs i) = ps ! i

10

Swap

swap : Fin n -> Fin n
 -> State n Unit
swap i j =
 read i >>= \pi ->
 read j >>= \pj ->
 write i pj >>
 write j pi

11

Back to the problem

12

An approximation

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)

13

An approximation

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)

Why does th
is

terminate?

13

An approximation

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)

sort (w + 1) r

sort w (r - 1)

14

An approximation

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)

sort (w + 1) r

sort w (r - 1)

Only terminates
if w ≤ r

14

Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White -> sort w
 Red -> swap r w >>
 sort r (w - 1)

 (w + 1)

 (r - 1)

15

Two problems

• We need to increment and decrement
inhabitants of Fin n;

• We need to prove that our algorithm
terminates.

16

Fs : Fin n -> Fin (Succ n)

17

Injection

inj : Fin n -> Fin (Succ n)
inj Fz = Fz
inj (Fs i) = Fs (inj i)

18

Fs or inj

0 1 2 3

Fs

0 1 2 3

inj

19

Idea

• Only increment the image of inj;

• Only decrement the image of Fs.

20

Difference

data Diff : (i j : Fin n) -> Set where

 Base : (i : Fin (Succ n) -> Diff i i

 Step : (i j : Fin n) ->

 Diff i j -> Diff (inj i) (Fs j)

21

Sort – Base case

sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit
sort i i Base = return unit

22

sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit
sort (inj w) (Fs r) (Step w r p)
 = read (inj w) >>= \p ->
 case p of
 White -> sort (Fs w) (Fs r) ?
 Red ->
 swap (inj w) (Fs r) >>
 sort (inj w) (inj r) ?

23

Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Fs i) (Fs j)

• Diff i j -> Diff (inj i) (inj j)

24

Verification

25

Verification
the easy part

25

Correctness Theorem

forall (h : Buckets n) (w r : Fin n),

(p : Diff w r) ->

(forall i -> i < w -> h ! i == White) ->

(forall i -> r < i -> h ! i == Red) ->

exists (m : Fin n),

 let h’ = sort w r p h in

 forall i -> i < m -> h’ ! i == White

 && forall i -> i > m -> h’ ! i == Red)

26

Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:

• Base case (trivial);

• No swap happens (not too hard);

• Swap happens (a bit trickier).

• In the latter two cases, we establish the
invariant holds and make a recursive call.

27

Conclusions

• It is possible to reason about “impure”
computations using Agda;

• A simple algorithm leads to simple proofs.

28

