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There is a row of buckets numbered from 1 to n. It is 
given that:

• each bucket contains one pebble

• each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of 
buckets and has to be programmed in such a way that 
it will rearrange (if necessary) the pebbles in the order 
of the Dutch national flag.

A Discipline of Programming, E.W. Dijkstra
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Specification

• The mini-computer supports two 
commands:

• swap (i,j) exchanges the pebbles in buckets 
numbered i and j for 1 ≤ i,j ≤ n;

• read (i) returns the colour of the pebble in 
bucket number i for 1 ≤ i ≤ n.

• Solution should use one pass only and 
constant memory.
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Verified Solution

• Implement the mini-computer in the 
dependently typed language Agda;

• Write a total solution for the Problem of the 
Dutch National Flag;

• Formally prove our solution is correct.
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Pebbles and Buckets
data Pebble : Set where
  Red : Pebble
  White : Pebble

data Buckets : Nat -> Set where
  Nil : Buckets Zero
  Cons : Pebble -> Buckets n -> 
         Buckets (Succ n)
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Indices

data Fin : Nat -> Set where
  Fz : Fin (Succ n)
  Fs : Fin n -> Fin (Succ n)
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The state monad

State : Nat -> Set -> Set

State n a = 

  Buckets n 

  -> Pair a (Buckets n)

9



Reading

read : Fin n -> State n Pebble

read i bs = (bs ! i , bs)

  where

  (Cons p ps) ! Fz = p

  (Cons p ps) ! (Fs i) = ps ! i
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Swap

swap : Fin n -> Fin n 
       -> State n Unit
swap i j = 
  read i >>= \pi ->
  read j >>= \pj ->
  write i pj >>
  write j pi
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Back to the problem
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An approximation

sort :: Int -> Int -> IO ()
sort w r =
  if w == r then return ()
  else case read w of
    White -> sort (w + 1) r
    Red  -> swap w r >>
            sort w (r - 1)
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Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
  if r == w then return ()
  else case read r of
    White -> sort           w 
    Red -> swap r w >>
           sort r (w - 1)

    (w + 1)

       (r - 1)
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Two problems

• We need to increment and decrement 
inhabitants of Fin n;

• We need to prove that our algorithm 
terminates.

16



Fs : Fin n -> Fin (Succ n)
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Injection

inj : Fin n -> Fin (Succ n)
inj Fz = Fz
inj (Fs i) = Fs (inj i)
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Idea

• Only increment the image of inj;

• Only decrement the image of Fs.

20



Difference

data Diff : (i j : Fin n) -> Set where

  Base : (i : Fin (Succ n) -> Diff i i

  Step : (i j : Fin n) ->

    Diff i j -> Diff (inj i) (Fs j)
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Sort – Base case

sort : (w r : Fin n) -> 
       Diff w r ->
       State n Unit
sort i i Base = return unit

22



sort : (w r : Fin n) -> 
       Diff w r ->
       State n Unit
sort (inj w) (Fs r) (Step w r p)
  = read (inj w) >>= \p ->
    case p of
      White -> sort (Fs w) (Fs r) ?
      Red -> 
        swap (inj w) (Fs r) >>
        sort (inj w) (inj r) ?
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Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Fs i) (Fs j)

• Diff i j -> Diff (inj i) (inj j)
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Verification
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Verification
the easy part
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Correctness Theorem

forall (h : Buckets n) (w r : Fin n),

(p : Diff w r) ->

(forall i -> i < w -> h ! i == White) ->

(forall i -> r < i -> h ! i == Red) ->

exists (m : Fin n),

  let h’ = sort w r p h in

  forall i -> i < m -> h’ ! i == White

  && forall i -> i > m -> h’ ! i == Red)
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Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:

• Base case (trivial);

• No swap happens (not too hard);

• Swap happens (a bit trickier).

• In the latter two cases, we establish the 
invariant holds and make a recursive call.
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Conclusions

• It is possible to reason about “impure” 
computations using Agda;

• A simple algorithm leads to simple proofs.
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