_n'se /Pro)o\em 0{7 H\e
/Dux’c\\ No\)'iono‘\ iﬂa&

Wouter Swierstra
Vector Fabrics

FP Dag 2010




_n‘\er-e IS o row 0{7 )Duc\?e)'s num):erecl From | Yo n. 1t s
3iven )"\\O\)":

° eo\c\\ )Duc\?e§' con)’o\ins one )ge)'))')\e
° eo\c‘\ )oe)o):»\e s eiH’xer recl, w\wi;'e, or )D\ue.

A mini-computer is laced in Font of” Fhis row o
buckets omc‘F \\o‘s Yo [‘r {7 ]O P
it will rearronge (l-F; necesso\rb) e )oe)o)o\es in +he order

OF phe ’Du)'c‘w noA'iono\\ ﬁas.

e Frog)ro‘mmecl n suck a woy ;'\ho\)'

A Discipline of Programming, E.WV. Dijkstra




Specification

® The mini-computer supports two
commands:

® swap (i,j) exchanges the pebbles in buckets
numberediandjfor | <ij<n;

® read (i) returns the colour of the pebble in
bucket numberifor | <i < n.

® Solution should use one pass only and
constant memory.



_n'se /Pro)o\em 0{7 H\e
/Dux’c\\ No\)'iono‘\ iﬂa&

Wouter Swierstra
AIM X




-n'se /Pro):v\em 0{7 H\e
’;w\'c}\ No\)'iono‘\ ﬂaﬁ

Wouter Swierstra
AIM X







Known to T

be white




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to T Known to

be white be red




Known to A Known to
be white be red




Verified Solution

® |mplement the mini-computer in the
dependently typed language Agda;

® Write a total solution for the Problem of the
Dutch National Flag;

® Formally prove our solution is correct.




Pebbles and Buckets

data Pebble : Set where
Red : Pebble
White : Pebble

data Buckets : Nat -> Set where
Nil : Buckets Zero
Cons : Pebble -> Buckets n ->

Buckets (Succ n)

D



Indices

data Fin : Nat -> Set where
Fz : Fin (Succ n)

Fs : Fin n -> Fin (Succ n)




Indices

data Fin : Nat -> Set where
Fz : Fin (Succ n)
Fs : Fin n -> Fin (Succ n)

/////”
Fs ‘r/////1://///l
L e e e



The state monad

State : Nat -> Set -> Set
State n a =

Buckets n

-> Pailir a (Buckets n)




Reading

read : Fin n -> State n Pebble
read 1 bs = (bs ! 1 , bs)
where

(Cons p ps) ! Fz = p
)

(Cons p ps) ! (Fs 1




Swap

swap : Fin n -> Fin n
-> State n Unit
swap 1 ] =
read i >>= \pi ->
read j >>= \pj ->

write i1 pj >>

write J pi




Back to the problem




An approximation

sort :: Int -> Int -> I0 ()
sort w r =
if w == r then return ()

else case read w of
White -> sort (w + 1) r
Red -> swap w r >>

sort w (r - 1)




An approximation




An approximation

sort (w + 1) r

sort w (r - 1)




An approximation

Only terminates
ifw<r

sort (w + 1) r

sort w (r - 1)




Manipulating Fin n




Two problems

® VWe need to increment and decrement
inhabitants of Fin n;

® We need to prove that our algorithm
terminates.




Fs : Fin n -> Fin (Succ n)




Injection

inj ¢ Fin n -> Fin (Succ n)

inj Fz = Fz

inj (Fs i)

Fs (inj i)




Fs or 1inj

/
.
o
inj @ - @
O @ d
I 2 3




ldea

® Only increment the image of inj;

® Only decrement the image of Fs.




Difference

data Diff : (1 J : Fin n) -> Set where

Base : (1 : Fin (Succ n) -> Diff 1 1

Step : (1 J ¢ Fin n) ->
Diff i j -> Diff (inj i) (Fs j)




Sort — Base case

sort : (wr : Fin n) ->
Diff w r ->
State n Unit

sort 1 1 Base = return unit




sort : (wr : Fin n) ->
Diff wr ->
State n Unit
sort (inj w) (Fs r) (Step w r p)
= read (inj w) >>= \p ->
case p of
White -> sort (Fs w) (Fs r) ?
Red ->
swap (inj w) (Fs r) >>

sort (inj w) (inj r) ?



L emmas

® We need to prove a few useful lemmas:

® Diff i j -> Diff (Fs i) (Fs jJ)

® Diff i j -> Diff (inj i) (inj j)




Verification




Verification

the easy part




Correctness Theorem

forall (h : Buckets n) (w r : Fin n),
(p : Diff wr) ->
(forall i -> i <w -> h ! i == White) ->
(forall i -=> r < i -> h ! i == Red) ->
exists (m : Fin n),

let h' = sort w r p h in

forall i -> 1 < m -> h’ ! i1 == White

&& forall i -> i > m -> h’ ! i == Red)




Proof sketch

® Proof proceeds by induction on Diff
® Distinguish three cases:

® Base case (trivial);

® No swap happens (not too hard);

® Swap happens (a bit trickier).

® |n the latter two cases, we establish the
invariant holds and make a recursive call.




Conclusions

® |t is possible to reason about “impure”
computations using Agda;

® A simple algorithm leads to simple proofs.




