Multi-Purpose Shared Data Sources
in a Functional Language

Steffen Michels and Rinus Plasmeijer

Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
s.michels@science.ru.nl, rinus@cs.ru.nl

Abstract. Modern software systems deal with huge amounts of data
from different sources. Data is stored at different locations, like in mem-
ory, in files, or in databases. Multiple threads, processes and remote ma-
chines access the same data concurrently. Many different solutions exist
for solving different issues emerging from this. This include methods for
abstracting from the actual storage, controlling access and keeping data
consistent in case of concurrent accesses.

In this paper multi-purpose shared data sources, abstracting from all
details but the type of data provided and received, are introduced. They
provide a uniform way for dealing with various kinds of data sources,
providing solutions for all of the issues mentioned above. Access control
is achieved using the type system. Compositional, safe operations can
be defined using atomic transactions. Finally, functional projections can
be used to change the way data is accessed and sources can be com-
bined. This makes is possible to abstract from how data is stored and
distributed, which leads to highly reusable code.

1 Introduction

Modern software has to deal with a huge amount of data from different sources.
Data can be stored at different locations, like in memory, in files, or in databases,
and also in different formats. Multiple threads, processes and remote machines
access the same data concurrently. But also the current time or measurements
can be viewed as shared data. Figure 1 illustrated that sharing occur on multiple
levels and includes various kinds of sources.

Many solutions exist for dealing with data sources. For instance, databases
provide tables or key-value pairs abstracting from the actual storage of data.
In object-oriented programming certain patterns are used, providing an inter-
face for accessing data, hiding the actual source. For complex pieces of software,
proper software engineering is essential. Access control is an important aspect,
e.g. one wants to enforce that a part of the program can retrieve and change data
only in a certain restricted way. In the object-oriented world getters and setters
are used to control access. Those kind of interfaces also help to achieve loose cou-
pling, making pieces of software reusable. Lenses [2] can be seen as a solution to
access only parts of a data structure in a certain way in the functional program-
ming world. Finally, for defining concurrent accesses several solutions exist. An
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advanced solution for dealing with shared memory, allowing composition and
avoiding common errors like deadlocks, are atomic transaction, as implemented
in Haskell [4].

In this paper we propose a uniform way for dealing with different kinds of
shared data sources, making it possible to deal with all issues discussed above.
This enables programmers to abstract from the way data is stored and retrieved,
such that one only has to deal with accessing data of certain types. Therefore,
code can be reused when the way data is stored changes. This kind of abstraction
perfectly fits in a pure functional language, like Clean which is used in this paper.
The shared data source references introduced in the paper have the following
advantages.

First, data sources are multi-purpose. They can represent arbitrary kinds of
data storages, like memory, files or databases. After creation all data sources can
be used in the same way. The actual operations can for example be mapped to
operations on memory shared by threads, or on XML encoded files shared by
different processes. Actually, even data sources other than data storage can be
represented. For instance, it is possible to create a data source providing a stream
of random numbers, or it can be a sensor to measure the current temperature.

Second, access control is statically enforced using the type system. The type
of data read and written can be different. This makes read-only sources, but also
more complex access restrictions possible. For example, it is possible to create a
data source providing a list of appointments of several people, but only allowing
to update the appointments of one particular person.

Third, data sources can be used inside atomic transactions. This allows to
define operations on multi-purpose data sources, in a composable, safe way.

Fourth, version numbers are kept for each data source. They can be used to
efficiently determine whether data is changed. They are not only used internally,



but also exposed to the user. This is for example useful to detect edit conflicts
when human users are editing data and it is desirable that other users can edit
the same data at the same time. An example is a Wiki where multiple users can
change the same article.

Finally, data sources are composable. Basically this means that it is possible
to create new data sources building on existing ones. Either functional projec-
tions can be used to change the type of data read or written or multiple data
sources can be combined to a new one. The new data sources behave like basic
ones. All operations are still possible, data remains consistent in case of concur-
rent accesses and version numbers can be used to detect changes. This makes
is possible to reuse code even when information is organised in a different way,
as long as there is a functional mapping between provided and required data
sources.

In this paper first, Section 2 summarised the concept of software transactional
memory (STM) and defines an interface for Clean. This will later serve as basis
for defining the semantics of multi-purpose data source representing shared mem-
ory. How data sources can be generalised to multi-purpose sources is discussed in
Section 3. In Section 4 it is described how data sources can be composed out of
other ones. It is shown that this is a powerful abstraction mechanism, allowing
code to become independent of how data is actually stored. Section 5 shows that
our multi-purpose data sources provide a powerful way to deal with data sources
in a task-oriented programming setting (the iTask system [7]). Finally, related
work is discussed and conclusions are drawn in Sections 6 and 7.

2 Software Transactional Memory

Atomic transactions are a well known abstraction to deal with data in shared
memory which is concurrently accessed. It has the advantage that programmers
can specify and compose operations which should be done atomically as if they
were normal operations. Actually performing changes as one atomic operation
is solved by the system. This kind of abstraction prevents a common source of
deadlocks, caused by circular dependencies.

Concurrent Haskell’s transactions [4] shows that a strongly-typed, pure func-
tional language is perfectly suited for this kind of abstraction. They can be im-
plemented in software as STM. Although this implementation is here restricted
to data shared in memory between threads, we use Haskell-style STM to de-
fine the semantics of our multi-purpose data sources for the case they represent
shared memory. Hereafter we show that the concept can be generalised to deal
with all kinds of data sources.

First, we define a Clean interface for Haskell-like STM. The basic idea of
atomic transactions is that all operations are simulated in first instance. At the
end of the transaction changes are actually committed, only if they can be done
consistently. This means it must be possible to perform all changes made during
the transaction as one atomic operation. Otherwise, the transaction is discarded
and has to be redone.



Because operations are simulated, no arbitrary side-effects are allowed in
transactions, but only a fixed set. In Haskell this is achieved using an STM monad
on which only a restricted set of operations can be performed. Since in Clean
I/0O is realised using uniqueness typing [1], in this paper an abstract, unique
environment, on which transaction operations are performed, is used:

: *Trans *env
atomic :: ((*Trans *env) — (TRes a, *Trans *env)) *env — (a ,*env)

: TRes a = YieldResult a | Retry
Using the unique Trans environment ensures that no side-effects can occur during
a transaction. Since the transaction environment still contains the actual envi-
ronment, its type is parametrised with this environment’s type. In Clean this is
typically World but it could also for instance be the file system. Here no context
restriction is enforced for the environment. The environment restricts which data
sources can actually be created, as discussed later.

The function defining the transaction can either yield an arbitrary result
(YieldResult) or block until one the variables read inside the transaction change
(Retry). Then the transaction is just performed again.

Operations are performed on variables (TVars) representing memory shared
between multiple threads. They have to be created explicitly, which is only pos-
sible for the Memory environment or an environment containing it (such as for
example World)':

: TVar a *env

newTVar :: a *env — (TVar a *env, *env) | MemoryEnv env
instance MemoryEnv *Memory; instance MemoryEnv *World

The only operations which can be performed within an atomic transaction are
reading and writing Tvars. Exceptions are omitted here. The semantics are equiv-
alent to the one defined for Haskell transactions [4]:

readTVar :: (TVar a *env) (*Trans *env) — (a, *Trans *env)
writeTVar :: a (TVar a *env) (*Trans *env) — *Trans *env

Ezxample 1. Adding an integer to a shared list of integers and yielding the mod-

ified list can be done by the following atomic operation?:
append :: Int (TVar [Int] *env) — ([Int], *env)
append i sharedList — atomic transaction env
where transaction tr
# (list,tr) = readTVar sharedList tr
# list = [i:list]
# tr = writeTVar list sharedList
= YieldResult list

3 Multi-purpose Data Sources

The idea behind multi-purpose sources is the following: because the concept of
transactions is a powerful abstraction for dealing with memory shared between
threads, why not use it to concurrently access other kind of data sources as

1 In Clean context restrictions are given at the end of a type signature after a ’|’.
2 The # is a compact notation for a let expression in Clean.



well? In this section the concept of transactional variables stored in memory
is generalised such that the operations provided can also be used to handle
different kinds of other data sources. Compile-time access control and the notion
of versions is added. The semantics of this extension are expressed in terms of
STM, as defined in the previous section. Finally, practical issues regarding the
actual implementation for several other kinds of data sources are discussed.

3.1 Multi-purpose Source Representation

Examples of data storages we want to include are files shared between several
processes, and databases shared between multiple machines. But data sources do
not have to be restricted to data storages. A data source can also be for instance
the current time or temperature. Actually each provider of data which is shared
and changes over time can be seen as a data source. This is similar to UNIX
files to which arbitrary data sources can be mapped.

Having data sources representing concepts like the current temperature gives
the problem of access control. It is possible to read the temperature but not to
change it. The strong type system can be used to statically enforce these kind
of restrictions. We achieve this by parametrising data sources with two type
parameters: the data which can be read and the data which can be written. This
leads to a generalised type for representing multi-purpose data sources:

: RWShared r w *env

The common case that a value of a certain type is shared (like with a Tvar) is
a special case with r =w. We use the type synonym Shared for this. It is also
possible to express read-only and write-only data sources as special cases of the
general type>:

: Shared a env:==RWShared a a env
: ROShared r env:==RWShared r Void env
: WOShared w env :== RWShared Void w env

Although the implementation of the operations for the different kind of data
sources will be quite different, for a programmer this is completely transparent.
The only visible difference is how these data sources are created. Here creation
functions for different kinds of sources are given:

sharedFile :: Path (String — a) (a — String) *env — (Shared a *env, *env) | FileEnv env
sharedMemory :: a *env — (Shared a *env, *env) | MemoryEnv env
time :: ROShared Timestamp *env | WorldEnv env // the current time

temp :: ROShared Timestamp *env | WorldEnv env // the current temperature

random :: ROShared Int *env | WorldEnv env // a stream of random numbers

null :: WOShared a *env // thrash can, writing has no effect

3.2 Exposed Version Numbers

Before defining the semantics of multi-purpose data sources we introduce another
useful concept, used for efficiently determining changes and conflicts. Internally,
for the implementation of transactions, an efficient way to determine if a source

3 Void is Clean’s unit type.



has changed, and therefore the transaction cannot be committed, is needed.
This is solved by using version numbers which are increased if a value changed.
Comparing two version numbers is more efficient than comparing (large) values.

We observed that version numbers are not only useful internally, but also for
the user of data sources. An example is an application allowing human users to
edit information, like iTask [7]. It is undesirable that such shared data sources
are locked during the entire editing process. Instead editing conflicts should be
detected and reported to the user.

Our concept of shared data sources allows very different kinds of implementa-
tions of actual sources. To make it possible to still reason about their behaviour,
they have to obey some properties connected with the version number:

Property 1 (Version Stability). The version number of a data source is only
increased because of a write operation. If no such operation is performed by any
processes, the version number does not change.

Property 2 (Value Version Equality). To determine if the value has changed it
is sufficient to compare the version number. If the version number is the same
as for a previous read operation, the value is the same, too.

Property 3 (Version Increasingness). The version number is increased if the
value is updated. It is never decreased. It can remain the same if the write
operation does not change the value (e.g. of read-only data sources). This prop-
erty is essential to make it possible to determine which of two versions is more
recent. Also version numbers can be combined by just summing them up, which
is essential for composition of data sources (Section 4.2).

For data sources just storing data (like shared memory or files), the behaviour
of version numbers is obvious. They are incremented when a write operation
is performed. Other abstractions, whose values change automatically, are mod-
elled by imaginary processes updating them. For instance, the current time data
source can be modelled with an imaginary process updating the timestamp each
second. The data source providing random numbers can be imagined as being
updated always just before a read operation is performed. So, it is possible to
express the behaviour of version numbers of that kind of data sources with the
same semantic model as data sources just storing a value in memory.

3.3 Shared Memory Semantics in Terms of STM

The semantics of shared memory sources are defined in terms of STM, as defined
in Section 2. Since TVars work on shared memory only, the semantics does not
capture other kinds of data sources. In the next section (Section 3.4) it is shown
how this can be generalised, by replacing the TvVars used in this section by a set
of low level functions, which has to be implemented for each kind of data source.

We continue defining multi-purpose sources and operations on them, in terms
of types and operations defined for STM. The type RWShared is represented by
two TVars and two functions:



: RWShared r w *env =3b: Shared (SharedRec b r w env)
: SharedRec b r w *env = { value :: TVar b env , get :: b —r
, version :: TVar Version env , put :: w b — Maybe b }

The two TVars store the basic value and the version number. Intuitively the basic
value is the actually stored value. In this case the representation of the value
in memory. For the generalised version discussed later, data could be stored in
files as well. Then the functions could be used to map data to and from a string
representation, for example JSON or XML. The basic value is of existentially
quantified type b. The only way to access it is to use one of the two functions.

The first one (get) is used to retrieve a value of the read type form the basic
value. The second one (put) is used to put a value of the write type back to
the basic value. It also uses the current basic value since values of the write
type might contain less information than the basic type. This idea is similar to
functional lenses [2,12]. The put function does not have to give a new value, the
value can be left unchanged, for instance in the case of read-only data sources.
The reason that get has to return a value is that a read operation always yields
a value. For write-only sources this is always Void. The shared memory defined
here, is a simple case where the basic, read and write types are equal:

sharedMemory :: a *env — (Shared a env, *env) | MemoryEnv env

sharedMemory x world

(val, world) = newTVar x world

(ver, world) = newTVar O world

shared = Shared { value= val, version = ver, get = id, put = const o Just }
(shared, world)

| # # #

The atomic function and the unique transaction environment of STM can still
be used. New read and write operations have to be define for RWwShared. They
have to make use of the get and put functions. Additionally the write operation
increments the version*. Since the operation works on a transaction state writing
the value and updating the version is done atomically®:

transRead :: (RWShared r w *env) (*Trans *env) — (r, (*¥Trans *env))

transRead (Shared {value, get}) env

# (b, env) = readTVar value env
= (get b, env)

transWrite :: w (RWShared r w *env) (*Trans *env) — *Trans *env
transWrite w (Shared {value, put, version}) env
# (b, env) = readTVar value env
= case put w b of Nothing = env
Just b
# env = writeTVar b‘ value env
# (ver, env) = readTVar version env
= writeTVar (inc ver) version env

An additional operation is added to expose the version numbers which can simply
be read from the corresponding TVar:
:: Version:== Int

transGetVersion :: (RWShared r w *env) (*Trans *env) — (Version, *Trans *env)
transGetVersion (Shared {version}) env = readTVar version env

4 Incrementing the version by one is actually an arbitrary choice. As long as the new
version is greater than the old one Property 3 is fulfilled.
5 The syntax {x,y,...} in a pattern is used to match fields of a record.



Ezample 2. Example 1 can straightforwardly be rewritten for multi-purpose
sources using the new operations:

append :: Int (Shared [Int] *env) — ([Int], *env)
append i sharedList = atomic transaction env
where transaction tr

# (list,tr) = transRead sharedList tr

# list = [i:list]

# tr = transWrite list sharedList

= YieldResult list

3.4 Extending the Implementation for Different Kinds of Sources

The semantics captured by the implementation in terms of STM, given in the
previous section, were restricted to shared memory. To abstract from the actual
kind of data source, we identify a set of basic operations needed to realise the
high level operations, defined before.

Obviously, it must be possible to read data from a source. Concrete examples
of read functions are functions reading data from memory or files and yielding a
value of the basic type. A read function could also retrieve the current time or use
a hardware sensor to measure a value. Because data is accessed concurrently, it
must be made sure that data is not changed while it is read by another process.
Therefore low level functions for locking and unlocking a source have to be
provided, too®.

At the end of a transaction the actual changes are committed. This consists
of two steps: checking for consistency and then possibly writing the changes.
This has to be done atomically which can be achieved by using the locking
functionality. During the transaction, a transaction log keeps track of version
numbers and possibly values to write. This requires a low level function for
retrieving the version. For storages it can just be a counter incremented each
time a value is written. Other kinds of sources have to choose a convenient way
determining a version number, obeying the properties defines in Section 3.2. For
instance the version number of the current time could be a timestamp.

With the low level functions defined so far, checking for consistency becomes
comparing integers. If the transaction can be committed consistently, changes
have to be written, for which another low-level function is needed. The function
has the obvious task for data storages and might be undefined for read-only
sources, like the current time.

Finally, after a retry there must be an efficient way (no busy waiting) to
wait for changes of a set of data sources. This becomes more complex as the
scope data sources are shared becomes larger. For memory shared within a pro-
cess, the program has full control when data is written to a source, and the
implementation is relatively easy. Detecting changes of files requires notification
methods of the OS. This case has been implemented as well. Efficiently waiting
until a database accessed by several machines has changed, seems to be doable as

6 For performance reasons a shared source can make a difference between an exclusive
and a shared lock. This allows multiple processes to read the same data simultane-
ously in case it is not changed.



well, but remains future work. For some non-storage sources one has to choose
a refresh interval, determining for instance how frequently the temperature is
measured.

4 Shared Data Source Combinators

The multi-purpose sources allow to use different kinds of data sources using
the same abstraction. In this section it is shown that an even higher level of
abstraction can be achieved making it possible to derive new data sources from
existing ones using combinators.

4.1 Projections

It has already been shown that access control can be achieved using different
types for data read and written. For some data sources, such as the current
temperature, it is obvious that they are created with certain access restrictions.
However, for software engineering reasons, one might want to change the way
data of an existing data sources can be accessed. For this purpose, projection
functions which change the read and write type of data sources, can be used.
The read type can be changed by providing a function from the old to the
new read type. For changing the write type a more sophisticated function is
needed since values of the write type might contain less information than that
of the read type and writing is optional. Projections can be implemented by
composing the projection functions with the put and get functions stored in the
source”:
mapRead :: (r — r‘) (RWShared r w *env) — RWShared r‘ w *env
mapRead get‘ (Shared share=:{SharedRec | get}) = Shared {SharedRe c| share & get = get‘ o get}

mapWrite :: (w‘ r — Maybe w) (RWShared r w *env) —> RWShared r w‘ *env
mapWrite put‘ (Shared share—:{SharedRec | get,put})
= Shared {SharedRec | share & put =Aw‘ b — maybe Nothing (Aw — put w b) (put‘ w‘ (get b))}

Ezxample 3. Turning a data source in a read-only one is a special case of pro-
jecting the write type:

toReadOnly :: (RWShared r w *env) — ROShared r *env
toReadOnly shared = mapWrite (A — Nothing) shared

A combinator for projecting both types of a data source can simply be derived:
mapRW :: (r — r‘, w' r — Maybe w) (RWShared r w *env) — RWShared r‘ w‘ *env

A functional lens which is a well known method to access only a part of a larger
data structure is a special case of this combinator. When r = w and writing is

obligatory the type of mapRW’s first argument becomes (s — v, v s — s) which is
a simple get/set notation of a lens.

" {record & x = ..., ...} denotes a record with a number of fields updated.



Ezample 4. Using a lens, from a shared tuple of two values, a data source sharing
only the first value can be derived:

fstlLens :: (Shared (a,b) *env) — Shared a *env
fstLens tuple = mapRW (fst, Ax (_,y) — Just (x,y)) tuple

Because pure functional projections are used to map values to a different type,
the behaviour of data sources after projection is not essentially different. In
particular all version properties, defined in Section 3.2, do still hold.

4.2 Composition

Projection provides a powerful way to provide data of a certain type abstracting
from what kind of data is actually stored. It still has the restriction that all data
must be retrieved from one single source. One might want to provide a data
source, which is actually a combination of several different sources. To overcome
this restriction a combinator for composing two data sources (>+) is introduced.

A second constructor is added to RWShared to represent composed data sources.
Composition can be applied repeatedly to build arbitrary large composed data
sources. Since the type remains RWShared, composition is completely transparent
for the user.

:: RWShared r w *env =3b: Shared (SharedRec b r w env)
| 3rx wx ry wy: ComposedSource (Composition r w rx wx ry wy env)
:: Composition r w rx wx ry wy *env =
{ srcX :: RWShared rx wx env, get :: rx ry — T
, srcY :: RWShared ry wy env, put :: w rx ry — Maybe (wx, wy) }

(>+) infixl 6 :: (RWShared rx wx *env) (RWShared ry wy *env) — RWShared (rx,ry) (wx,wy) *env
(>+<) shareX shareY = ComposedSource

{ srcX = shareX, srcY = shareY, get =Arx ry — (rx,ry), put =X (wx,wy) — Just (wx,wy) }

Similar to the get and put function of a basic share there are functions to combine
data retrieved from both shares and to write data back.

Ezxample 5. The combination of composition and projection is very powerful. A
concatenation operation for two read-only lists yielding a new list can be defined
like this:

concat :: (ROShared [a] *env) (ROShared [a] *env) — ROShared [a] *env
concat x y = mapRead (A (x,y) = x +H7y) (x> y)

Composition makes it possible to combine different kinds of data sources, which
is completely transparent for the user. An example of a composed source using
different kinds of storages is given in Figure 2.

The concepts are powerful enough to put for instance a symmetric lens [5]
between two data sources. A derived combinator can be defined as this®:

symLens :: (a b — b) (b a — a) (Shared a *env) (Shared b *env) — (Shared a *env, Shared b *env)
symLens putr putl sharedA sharedB = (newSharedA, newSharedB)
where sharedAll = sharedA >+< sharedB

newSharedA = mapReadWrite (fst, Aa (_,b) — (a,putr a b)) sharedAll

newSharedB = mapReadWrite (snd, Ab (a,_) — (putl b a,b)) sharedAll

8 A simple notation without complement (see [5]) is used here for pragmatic reasons,
without consequences for the expressiveness.



Fig. 2. Composed Sources (C) consisting of Basic Source (B) Referring to Different
Kinds of Storages

One thing to note is that the type of the arguments and resulting shared sources
remains the same. From the outside nothing changes, but there is a hidden
connection between those two data sources. For the user of such a data source
this is completely transparent, but if one is changes the other is changed as well.

For all operations using shares, a case for handling the composed case has to
be added. Reading and writing is achieved by using the functions stored in the
composition and performing read or write operations on the single shares. This
happens atomically since the operation can be performed within a transaction
only:

transRead :: (RWShared r w *env) (*Trans *env) — (r, (*Trans *env))
transRead (ComposedSource {srcX, srcY, get}) tr

# (x, tr) = transRead srcX tr

# (y, tr) = transRead srcY tr

= (get x y, tr)

transWrite :: w (RWShared r w *env) (*Trans *env) — *Trans *env

After composition the properties defined in Section 3.2 should still hold. This
can be achieved by simply adding the version numbers of the components. Since
all individual version number increase, it is guaranteed that a unique, combined
values belongs to each combined version.

Finally, similar as for the basic case, projection can be achieved by composing
functions:

mapRead :: (r — r‘) (RWShared r w *env) — RWShared r‘ w *env
mapRead get‘ (ComposedSource share=:{Composition|get})
= ComposedSource {share & get =Arx ry — get‘ (get rx ry)}

mapWrite :: (w‘ r — Maybe w) (RWShared r w *env) — RWShared r w‘ *env
mapWrite putb‘ (ComposedSource share=:{Composition|put, get}) = ComposedSource
{share & put =Aw‘ rx ry — maybe Nothing (A\w — put w rx ry) (put‘ w‘ (get rx ry))}

5 Example: 1Task— Using Multi-purpose Sources in a
Task-oriented Programming Setting

The iTask library allows to program webservices interacting with the outside
world in a task-oriented style. This means that tasks are the main building
blocks of such programs. The idea is to describe the tasks to do on a high
level of abstraction. As much implementation details as possible are hidden. The
system automatically keeps track of the state, generates serialisations and ways
to interact with the system [7].



A very important part of the system is the ability to let users view or update
data models, just by defining functional relations between the actual model and
views used by the user. Details including generating an interactive webform and
performing validation, such that only values of the proper type can be created,
are all handled automatically. The system is not only able to deal with data
local to a task, but also with shared data.

5.1 Products & Orders — Updating Data Models in the ¢Task
System

A simple webshop is used to illustrate how shares can be used in a task-oriented
programming setting. This kind of application can naturally be described in
terms of tasks assigned to different human and non-human users: Customers
using a web interface for generating orders, people maintaining the product
database and printers printing invoices. To begin we define a few simple types
describing products and orders:

:: Product = {id :: ProductID, name :: String, description :: String, price :: Int}

:: Order = {date::Date, customer::Customer, products::[(Int, Product)], status::OrdStatus}
: OrdStatus = New | InvoicePrinted | Shipped

In the system there is one store containing products and one for orders. They

are represented by shared data sources®:

products :: Shared [Product]; orders :: Shared [Order]

In order to allow users to interact with the system special tasks making it possible
to change local or shared states are provided. The task updating a shared state
is similar to the one defined in [10]'° 1

: Description :—== String
updateSharedInformation :: Description (RWShared r w) — Task r | iTask r & iTask w
For example the following task one-liner automatically generates a webform a
human user can use to update the product store, as shown in Figure 3:

updateSharedInformation "Update product store" products

We use two kinds of powerful abstractions here. We abstract from the actual
updated data store by using a share introduced in this paper. The actual data
could be stored in, for instance, files or some kind of other database. Additionally
we use the abstraction provided by the task having the goal of updating a data
source, abstracting from how this is done. The system automatically generates
a webform and ensures that all fields are filled in correctly, such that type-safety
is remained.

9 Within the iTask system a type synonym is provided such that Shared can be used
without the environment parameter. All shares within the system use the same
internal iTask state.

10 The iTask context restriction includes all utility functions used by the system, for
instance for storing the state, generating webforms and verifying inputs.

1 In the actual system the task is more complex. The most important difference is
that it is possible to combine local and shared data to a single view.



|| update product store
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Fig. 3. Automatically Generated GUI for Updating a Product Store

To build more complex tasks those basic tasks can be combined to more
complex ones, basically using sequencing an parallel branching. Also it is possible
to tune the layout of the generated user interface. The details are out of the scope
of this paper.

5.2 Printing Invoices — Making Tasks Independent from Data
Storage

The concept of tasks is not only powerful for describing interactions with human
users but also with other machines, such as printers. In this example we assume
that there are several printers producing invoices for new orders and changing
the status of orders to InvoicePrinted. Without giving the implementation we use
the following task for this:

printInvoices :: (Shared [Order]) — Task Void

The task does not yield a result. There could be one instance of such a task for
each printer waiting for work and running until stopped from the outside. While
this is a working solution, bad encapsulation is achieved. The task printInvoices
has to extract all information needed for printing an invoice from an order. When
the representation of orders change in the system, the task has to be refactored,
too. Further, it can access and change too much information. Actually the task
could change the date or customer of an order while its purpose is to sorely print
invoices and change the status from New to InvoicePrinted.

To solve this, first we introduce a new type containing only the information
needed to perform this tasks:

: Invoice = {data :: Date, customer :: Customer, products :: [(Int, Product)], printed :: Bool}

Using projections (Section 4.1) it is possible to map the order source to an
invoice one. Additionally write access is restricted to the printed field. The new



task working on such a data source cannot change the date or customer of an
order!?:

invoices:: (Shared [Order]) — RWShared [Invoice] [Bool]
invoices orders = mapRW (get, put) orders
where get ords = [{Invoicel|date = date,...} \\ {Orderl|date,...} +— ords
put printed orders = Just [{Orderlo & printed = p} \\ o<—orders & p < printed]|

printInvoices :: (RWShared [Invoice| [Bool]) — Task Void

To show how powerful this approach is we examine the case the order type is
changed. In the original type the products themselves are stored which makes it
hard to keep the system in a consistent state when a product changes and wastes
storage space because products are copied into each order. A better approach
would be to store the IDs of products which leads to a new type for orders:

:: Order = {date::Date, customer::Customer, products::[(Int, ProductId)], status::0OrdStatus}

Using a combination of projection and composition (Section 4.2) a mapping
from the order and product store, to a data source usable by printInvoices, can
be defined straightforwardly. The implementation of printInvoices can remain
unchanged.

invoices :: (Shared [Order]) (Shared [Product]) — RWShared [Invoice] [Bool]

Summarized compositional shared data sources add a new kind of abstraction
to the iTask system. The task is not only a high-level description of its purpose,
abstracting from implementation details. It can also abstract from how data
storage is done by using a shared source providing and processing exactly the
information it needs. This leads to highly reusable task descriptions.

6 Related Work

Concurrent Haskell’s MVars [11] provide a way to share data between and syn-
chronise concurrent processes in a functional language. They behave similar as
channels and are more suited to synchronise the access to a shared data source
rather than providing the data by themselves. Variables used within atomic
transactions (7TVars) [4] are more similar to the shared data references intro-
duced in this paper but are less powerful. For example they are not compositional
and are restricted to data stored in memory, shared between threads.

LINQ [9] provides a solution for abstracting from the actual implementation
of a data source and provides a query language to retrieve data from a collection.
This collection could for instance be a collection of objects from the host pro-
gramming language, relational or XML data. Queries are only used to retrieve
data, not to update it, and only collections are handled while the approach in
this paper can deal with data sources of arbitrary type. Further the language is
restricted to operations like traversal, filtering, and projection. The approach in

12 1deally one would want to express that the length of the list of invoices read equals
the length of flags written back. It is not possible to enforce this statically using
Clean’s type system. Therefore this issue has to be handled at runtime.



this work, using functions, is more powerful but might be less efficient. Similar
approaches exist for functional languages [6, 3].

Finally, there is work showing that relational databases can automacially
be mapped to types of a functional language. This also allows writing back
changes [8]. Even if less general than the approach proposed here (restricted
to databases, not arbitrarily composable, ...), this work might give ideas for an
efficient way to map relational databases to shared data sources, introduced in
this paper.

7 Conclusions & Future Work

We introduced multi-purpose shared data sources, a uniform way of dealing
with issues related to sharing data. After creation the actual implementation is
completely hidden for the user. The only information given is the type of the
data which can be read from and the type of the data which can be written to
the data source. Using two types allows enforcing access restrictions statically
using the type system.

The semantics for the shared memory case are defined in terms of STM and
it is shown how the concept is extended to be able to deal with all kinds of data
sources. This is implemented for shared memory and files. Therefore, different
kinds of multi-purpose sources can be used together in atomic transactions,
making it possible to define composable, safe operations.

Another powerful abstraction is introduced using shared source combinators.
The way data is accessed can be changed using functional projections. Sources
can also be combined, making it possible to abstract from the distribution of
data.

Finally, we showed how this abstraction can be used in a task-oriented pro-
gramming framework. Shared data sources can now be defined with the same
level of abstraction as interaction with the user. Code using data sources becomes
highly reusable.

While multi-purpose data sources provide a very general and powerful ab-
straction, they can become very inefficient. Using functional projections requires
reading all data the original sources provide and then possibly discarding a huge
amount of it. So finding a way to improve the efficiency of projections is an
important direction for future work. Especially, shares representing databases
should only retrieve data really needed. Other open issues related to databases
are integrating their various synchronisation mechanisms and finding ways to
efficiently wait for changes.
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