
Type Directed Interactive Workflow
Modelling

Tim Steenvoorden
Rinus Plasmeijer

Dutch FP Day, January 5, 2018

Request solar panel subsidy

1. present a webform to an applicant
2. check if he/she is obligable for a subsidy
3. ask for tax compensation documents 

and a contractor declaration
4. submit the request to the tax office

Example

2

requestSolarPanelCompensation :: Citizen -> Task ()
requestSolarPanelCompensation citizen
= checkConditions citizen
>>- \checks -> if (not checks.ownsRealEstate || not checks.noSubsidyPast5Years)

(showChecks checks)
(obtainDeclarations citizen
>>- \result ->
case result of
CanceledByCitizen _ = return ()
CanceledByCompany _ = showChecks {checks & declarationCompany = False}
Declarations dossier = submitOrCancelSubsidy dossier)

(a) The top level task description of applying for compensation

:: Declarations = CanceledByCitizen NameHomeAddress
| CanceledByCompany Company
| Declarations TaxSolarPanelDossier

obtainDeclarations :: Citizen -> Task Declarations
obtainDeclarations citizen
= get currentDate
>>- \d -> deadlineWith (clientDeadlineDate d) Nothing

(maybeCancel "Cancel Request"
(declarationApplicant d -&&- declarationCompany d applicant))

@ toDeclarations d applicant
where applicant = nameHomeAddressFromCitizen citizen

(b) The top level structure of obtaining applicant and company declarations

declarationApplicant :: Date -> Task TaxCompensationDocuments
declarationApplicant today
= (enterInformation msg [] >>= return)

-||
(reminder (clientReminderDate today) "finish your request for tax compensation")

where
msg = "Please enter the following information for your tax compensation request:"

(c) The applicant creates the solar panel tax compensation documents

Fig. 8: Task Modeling, part 1

requestSolarPanelCompensation :: Citizen -> Task ()
requestSolarPanelCompensation citizen
= checkConditions citizen
>>- \checks -> if (not checks.ownsRealEstate || not checks.noSubsidyPast5Years)

(showChecks checks)
(obtainDeclarations citizen
>>- \result ->
case result of
CanceledByCitizen _ = return ()
CanceledByCompany _ = showChecks {checks & declarationCompany = False}
Declarations dossier = submitOrCancelSubsidy dossier)

(a) The top level task description of applying for compensation

:: Declarations = CanceledByCitizen NameHomeAddress
| CanceledByCompany Company
| Declarations TaxSolarPanelDossier

obtainDeclarations :: Citizen -> Task Declarations
obtainDeclarations citizen
= get currentDate
>>- \d -> deadlineWith (clientDeadlineDate d) Nothing

(maybeCancel "Cancel Request"
(declarationApplicant d -&&- declarationCompany d applicant))

@ toDeclarations d applicant
where applicant = nameHomeAddressFromCitizen citizen

(b) The top level structure of obtaining applicant and company declarations

declarationApplicant :: Date -> Task TaxCompensationDocuments
declarationApplicant today
= (enterInformation msg [] >>= return)

-||
(reminder (clientReminderDate today) "finish your request for tax compensation")

where
msg = "Please enter the following information for your tax compensation request:"

(c) The applicant creates the solar panel tax compensation documents

Fig. 8: Task Modeling, part 1

requestSolarPanelCompensation :: Citizen -> Task ()
requestSolarPanelCompensation citizen
= checkConditions citizen
>>- \checks -> if (not checks.ownsRealEstate || not checks.noSubsidyPast5Years)

(showChecks checks)
(obtainDeclarations citizen
>>- \result ->
case result of
CanceledByCitizen _ = return ()
CanceledByCompany _ = showChecks {checks & declarationCompany = False}
Declarations dossier = submitOrCancelSubsidy dossier)

(a) The top level task description of applying for compensation

:: Declarations = CanceledByCitizen NameHomeAddress
| CanceledByCompany Company
| Declarations TaxSolarPanelDossier

obtainDeclarations :: Citizen -> Task Declarations
obtainDeclarations citizen
= get currentDate
>>- \d -> deadlineWith (clientDeadlineDate d) Nothing

(maybeCancel "Cancel Request"
(declarationApplicant d -&&- declarationCompany d applicant))

@ toDeclarations d applicant
where applicant = nameHomeAddressFromCitizen citizen

(b) The top level structure of obtaining applicant and company declarations

declarationApplicant :: Date -> Task TaxCompensationDocuments
declarationApplicant today
= (enterInformation msg [] >>= return)

-||
(reminder (clientReminderDate today) "finish your request for tax compensation")

where
msg = "Please enter the following information for your tax compensation request:"

(c) The applicant creates the solar panel tax compensation documents

Fig. 8: Task Modeling, part 1
declarationCompany:: Date NameHomeAddress -> Task (Company,Maybe CompanyDeclaration)
declarationCompany today applicant
= selectOfficialSolarPanelCompany
>>- \company ->

(company.cocNo,"Request declaration")
@: (provideDeclaration today applicant company)

-||
(reminder (clientReminderDate today) "please finish the proof")

>>= \decl -> viewInformation (msg_decision company decl) [] decl
>>| return (company,decl)

where
msg_decision c d = "Declaration was " +++ if (isNothing d) "negative" "positive"

(a) The applicant identifies the roofing company

provideDeclaration:: Date NameHomeAddress Company -> Task (Maybe CompanyDeclaration)
provideDeclaration today applicant company
= viewInformation msg [] applicant
>>* [OnAction (Action "Yes, I provide declaration")

(always (provide >>- return o Just))
, OnAction (Action "No, unknown customer") (always (return Nothing))]

where
msg = "This customer would like to receive a declaration for the tax authorities:"

(b) The roofing company is asked to provide evidence

submitOrCancelSubsidy :: TaxSolarPanelDossier -> Task ()
submitOrCancelSubsidy dossier
= viewInformation "You can submit the subsidy" [] dossier
>>* [OnAction (Action "Submit") (always (submitSubsidy dossier))

, OnAction (Action "Cancel") (always (return ()))]

submitSubsidy :: TaxSolarPanelDossier -> Task ()
submitSubsidy dossier
= get currentDate
>>- \date -> let dossier = {dossier & date = date}
in ((viewInformation "Your request is being processed" [] ())

||-
((UserWithRole "officer","Subsidy request") @: processRequest dossier))

>>- \decision -> viewInformation "Your request has been processed" [] decision
>>* [OnAction (Action "Edit request") (ifCond (decision.status <> Approved)

(resubmitSubsidy dossier))
, OnAction (Action "Cancel request") (ifCond (decision.status <> Approved)

(return ()))
, OnAction (Action "Continue") (ifCond (decision.status == Approved)

(return ()))]
>>| return ()

resubmitSubsidy :: TaxSolarPanelDossier -> Task ()
resubmitSubsidy dossier
= updateInformation "Edit your documents" [] dossier.request.documents
>>= \new -> submitOrCancelSubsidy {dossier & request.documents = new }

(c) The applicant can submit, cancel, or update and resubmit a request

Fig. 9: Task Modeling, part 2

declarationCompany:: Date NameHomeAddress -> Task (Company,Maybe CompanyDeclaration)
declarationCompany today applicant
= selectOfficialSolarPanelCompany
>>- \company ->

(company.cocNo,"Request declaration")
@: (provideDeclaration today applicant company)

-||
(reminder (clientReminderDate today) "please finish the proof")

>>= \decl -> viewInformation (msg_decision company decl) [] decl
>>| return (company,decl)

where
msg_decision c d = "Declaration was " +++ if (isNothing d) "negative" "positive"

(a) The applicant identifies the roofing company

provideDeclaration:: Date NameHomeAddress Company -> Task (Maybe CompanyDeclaration)
provideDeclaration today applicant company
= viewInformation msg [] applicant
>>* [OnAction (Action "Yes, I provide declaration")

(always (provide >>- return o Just))
, OnAction (Action "No, unknown customer") (always (return Nothing))]

where
msg = "This customer would like to receive a declaration for the tax authorities:"

(b) The roofing company is asked to provide evidence

submitOrCancelSubsidy :: TaxSolarPanelDossier -> Task ()
submitOrCancelSubsidy dossier
= viewInformation "You can submit the subsidy" [] dossier
>>* [OnAction (Action "Submit") (always (submitSubsidy dossier))

, OnAction (Action "Cancel") (always (return ()))]

submitSubsidy :: TaxSolarPanelDossier -> Task ()
submitSubsidy dossier
= get currentDate
>>- \date -> let dossier = {dossier & date = date}
in ((viewInformation "Your request is being processed" [] ())

||-
((UserWithRole "officer","Subsidy request") @: processRequest dossier))

>>- \decision -> viewInformation "Your request has been processed" [] decision
>>* [OnAction (Action "Edit request") (ifCond (decision.status <> Approved)

(resubmitSubsidy dossier))
, OnAction (Action "Cancel request") (ifCond (decision.status <> Approved)

(return ()))
, OnAction (Action "Continue") (ifCond (decision.status == Approved)

(return ()))]
>>| return ()

resubmitSubsidy :: TaxSolarPanelDossier -> Task ()
resubmitSubsidy dossier
= updateInformation "Edit your documents" [] dossier.request.documents
>>= \new -> submitOrCancelSubsidy {dossier & request.documents = new }

(c) The applicant can submit, cancel, or update and resubmit a request

Fig. 9: Task Modeling, part 2

declarationCompany:: Date NameHomeAddress -> Task (Company,Maybe CompanyDeclaration)
declarationCompany today applicant
= selectOfficialSolarPanelCompany
>>- \company ->

(company.cocNo,"Request declaration")
@: (provideDeclaration today applicant company)

-||
(reminder (clientReminderDate today) "please finish the proof")

>>= \decl -> viewInformation (msg_decision company decl) [] decl
>>| return (company,decl)

where
msg_decision c d = "Declaration was " +++ if (isNothing d) "negative" "positive"

(a) The applicant identifies the roofing company

provideDeclaration:: Date NameHomeAddress Company -> Task (Maybe CompanyDeclaration)
provideDeclaration today applicant company
= viewInformation msg [] applicant
>>* [OnAction (Action "Yes, I provide declaration")

(always (provide >>- return o Just))
, OnAction (Action "No, unknown customer") (always (return Nothing))]

where
msg = "This customer would like to receive a declaration for the tax authorities:"

(b) The roofing company is asked to provide evidence

submitOrCancelSubsidy :: TaxSolarPanelDossier -> Task ()
submitOrCancelSubsidy dossier
= viewInformation "You can submit the subsidy" [] dossier
>>* [OnAction (Action "Submit") (always (submitSubsidy dossier))

, OnAction (Action "Cancel") (always (return ()))]

submitSubsidy :: TaxSolarPanelDossier -> Task ()
submitSubsidy dossier
= get currentDate
>>- \date -> let dossier = {dossier & date = date}
in ((viewInformation "Your request is being processed" [] ())

||-
((UserWithRole "officer","Subsidy request") @: processRequest dossier))

>>- \decision -> viewInformation "Your request has been processed" [] decision
>>* [OnAction (Action "Edit request") (ifCond (decision.status <> Approved)

(resubmitSubsidy dossier))
, OnAction (Action "Cancel request") (ifCond (decision.status <> Approved)

(return ()))
, OnAction (Action "Continue") (ifCond (decision.status == Approved)

(return ()))]
>>| return ()

resubmitSubsidy :: TaxSolarPanelDossier -> Task ()
resubmitSubsidy dossier
= updateInformation "Edit your documents" [] dossier.request.documents
>>= \new -> submitOrCancelSubsidy {dossier & request.documents = new }

(c) The applicant can submit, cancel, or update and resubmit a request

Fig. 9: Task Modeling, part 2

Goals

• Understandable by domain experts

• Comprehensible set of basic elements

• Visual representation

• Editable using handful of operations

• Assist during design of workflows

3

itasks_tonic_examples.parallelChat :: Task [[String]]

get

currentUser
me

enterSharedMultipleChoice

"Select friends"
users

friends

users = [me : friends]
withShared

repeatn (length users) ""

chatBox
Parallel allTasks

chatTasks users chatBox

Figure 6. Static blueprint of parallel chat example in iTasks

iTask
specifica-

tion

AST
Core
Clean

parse
desugar

AST
Core
Clean

typing

AST
Core
Clean

tonic

blueprint

abc code /
object
code

code
generator

executable

static
linker

sapl code

sapl
code

...

JavaScript

code
generator

Clean compiler: front-end Clean compiler: back-end

iTask
SDK

Clean
SDK

Figure 7. Global Architecture of the Clean - Tonic compiler

:: TPriority = TPrio TAssoc Int | TNoPrio

:: TAssoc = TLeftAssoc | TRightAssoc | TNoAssoc

TExpr contains the usual suspects for a small core language, such
as variables, literals, lambdas, lets and cases. Function applica-
tion, however, is represented by two distinct constructors: TMApp and
TFApp. The former represents function application of all contained
monads (hence the M), the latter all other function applications.
Several constructors contain additional meta-data. An ExprId, found
in the TVar, TMApp, TFApp, TIf, and TCase constructors, uniquely iden-
tifies those expressions in a blueprint. This turns out to be very
useful later on when we will make blueprints show dynamic beha-
viour (Section 4). TMApp also contains the type of the monad (if the
fuction is monomorphic in its monadic return type) and the name
of the module in which the function being applied is defined. This
is to disambiguate functions with the same name. In addition to the
function’s arguments and priority, it has an optional VarPtr in case
the function being applied is variable.

4. Dynamic Blueprints
A static blueprint gives a graphical view of how the monad combin-
ators are defined in the source code. Now we want be able to trace
and inspect the execution of the resulting application, making use
of the static blueprints. Although the monad parts of the program
may be just a small part of the source code, they are an import-
ant part and they commonly form the backbone of the architecture
of the application. If we can follow their execution and see how
their corresponding blueprints are being applied, we will already
have a good impression of the run-time behaviour of the applic-
ation. We want to show which monadic computation is currently
being executed, how far along the program’s flow we currently are,
the current value for a given argument or variable, the result of a
completed computation, and which program branches will be taken
in the future. Before delving into the technical challenges associ-
ated with addressing these requirements, lets look at our previous
examples and how their static blueprints can be used at run-time.

When a function with a Blueprint-monadic type is applied, we
make an instantiation (a copy) of its corresponding static blueprint,
creating a dynamic blueprint. On top of it we can show who is

calling it, we can inspect its actual arguments, and visualize the
progress in the flow when the body is being executed. The Tonic
viewer can show and inspect these dynamic blueprints. Notice that
Tonic can show the blueprints in real-time, i.e. when the application
is being executed. Tonic also allows inspecting the past, and it
can sometimes predict the future. Since we output blueprints in
SVG, most blueprints in this section are imported SVG files. In
some cases, however, we use a screen-shot instead. This is so we
can include other DOM elements, such as Tonic’s value inspector
windows, as well.

4.1 Dynamic Blueprints of the Task Monad
In this section we will look at how we augment the blueprints of
the previous examples with run-time information.

4.1.1 Prime Number Checker
In the primeCheck example we saw sequential composition using a
bind combinator. Since bind determines the order in which com-
putations are executed, it is a great place for us to track progress
in a program’s flow. Figure 8 shows the dynamic blueprints for the
primeCheck iTasks program as it is executed.

When the program starts and the user is presented with the input
field, its corresponding blueprint instance is that of Figure 8(a).
Immediately the blueprint is different from its static incarnation in
several ways. A pair of numbers is added in the top bar, next to
the task name. This is the task ID, uniquely identifying this task
instance within the iTasks run-time system. Next to it is the image
of a person, together with the name of the person that is currently
executing this particular task instance. Going to the lower half of
the blueprint, we see that the upper area of the task-application
node is coloured green. Green means that the task is currently
actively being worked on. We also say that the enterNumber node
is active. Additionally, the task ID of the enterNumber task instance
is added to the blueprint and positioned next to the task name.

Next to each node, a square is drawn. Clicking on this square
allows us to inspect the task’s value in real-time. Its colour also
indicates the stability of the task’s value. In Figure 8(a), there is
no value yet, hence the square is white. This is confirmed by a
pop-up window when we click the white square. However, as soon
as a number is entered by the end user in the editor’s text field,
or whenever the number is changed, the current input is directly
shown in the inspection window (Figure 8(b)).

On the right side of the blueprint there is a conditional node,
followed by two viewInformation nodes, which now have green
borders. These border colours tell us something about the future, in
particular which program branch might be taken. Since the program
has only just started, all branches might still be reached. However,
when we enter the number 42 to the enterNumber task’s text field
– which is not a prime number – we can already predict that the
True branch will not be reached. This is represented by red borders,
as seen in Figure 8(b). If we would change the number in the
box to, e.g., 7 the tasks in the False branch would receive a red
border instead. We call this feature dynamic branch prediction.
Once the user has entered a number and has pressed “Continue”, the
work-flow progresses to the second task and the blueprint instance

Not editable!

Tonic by Stutterheim (2014, 2015)

Today

What?

• One language (domain specific, subset of iTasks)
• Two representations:

• Visual
• Textual

How?

1. Take a problem
2. Solve it in easy steps
3. Correct our solution
4. Study some background

4

Visual Representation

Example

Request solar panel subsidy

1. present a webform to an applicant
2. check if he/she is obligable for a subsidy
3. ask for tax compensation documents 

and a contractor declaration
4. submit the request to the tax office

6

Library

7

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

8

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

Basics

request subsidy

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

check

parallel

9

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

10

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

11

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

12

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

13

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

14

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

provide declaration

declaration

applicant = …
contractor = …

15

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

provide declaration

declaration

applicant = info
contractor = … ⇐ Error

Nothing of type
‘ContractorInfo’
in scope, maybe
produce one
before?

16

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

provide declaration

declaration

applicant = info
contractor = …

17

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents contractor

provide declaration

declaration

applicant = info
contractor = …

18

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents contractor

provide declaration

declaration

applicant = info
contractor = contractor

19

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor?

contractor

provide declaration

declaration

applicant = info
contractor = contractor

select contractor
 uses –
 yields contractor : ContractorInfo

use “select contractor” here?

20

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

21

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

22

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

 contractor : ContractorInfo
 declaration : ContractorDecl
 documents : CompensationDocs
 info : CitizenInfo

23

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

24

enter “Your details”

info

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

1. present a webform to an applicant
2. check if he/she is obligable for a subsidy
3. ask for tax compensation documents

and a contractor declaration
4. submit the request to the tax office

Request solar panel subsidy

25

enter “Your details”

info

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

1. present a webform to an applicant

2. check if he/she is obligable for a subsidy

3. ask for tax compensation documents

and a contractor declaration

4. submit the request to the tax office

26

enter “Your details”

info

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

1. present a webform to an applicant

2. check if he/she is obligable for a subsidy

3. ask for tax compensation documents

and a contractor declaration

4. submit the request to the tax office

27

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

Note: just a sequence of three tasks,
⟹ maybe abstract?

28

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

29

provide documents
 uses –
 yields documents : CompensationDocs

provide declaration
 uses applicant : CitizenInfo,
 contractor : ContractorInfo
 yields declaration : ContractorDecl

select contractor
 uses –
 yields contractor : ContractorInfo

submit request
 uses documents : CompensationDocs,
 declaration : ContractorDecl
 yields –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

provide documents

documents

select contractor

contractor

provide declaration

declaration

applicant = info
contractor = contractor

submit request

documents = documents
declaration = declaration

pr sel

prd
ap

30

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

…
 applicant ⟶ declaration, documents

declaration
documents

applicant = info

31

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations
 applicant ⟶ declaration, documents

obtain declarations

declaration
documents

applicant = info

32

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

33

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

verdict

applicant = info
obtain declarations
 applicant ⟶ declaration, documents

34

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

check conditions

35

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

info

Init Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

check conditions

36

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

…… ?

check conditions

37

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

TrueFalse verdict

check conditions

38

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

TrueFalse verdict

check conditions

39

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

view “Cannot apply”

info = –

TrueFalse verdict

check conditions

40

provide documents
 – ⟶ documents

provide declaration
 applicant, contractor ⟶ declaration

select contractor
 – ⟶ contractor

submit request
 documents, declaration ⟶ –

Library

Basics

request subsidy

enter “Your details”

infoInit Extend ↑

Split Lift

Swap Extend ↓

Operations

view
 uses info: α
 yields –

enter
 uses –
 yields info : α

check

parallel

submit request

documents = documents
declaration = declaration

obtain declarations

declaration
documents

applicant = info

check conditions

verdict

applicant = info

obtain declarations
 applicant ⟶ declaration, documents

view “Cannot apply”

info = –

TrueFalse verdict

check conditions ⟸ We could do this ourselves,
or let somebody else do it!

Fix ⟹

Textual Representation

Tasks

42

with values

do some task

for observables

do a task

observables

values

with applicant info do obtain declarations for declaration and documents

value =
indirect object

task =
verb + direct object

with a water hose do extinguish fire for success

with guns and canons do attack enemy for elimination

Tasks

43

with values

do some task

for observables

do a task

observables

values

with applicant info do obtain declarations for declaration and documents

value =
indirect object

task =
verb + direct object

obtain declarations

declaration
documents

applicant = info

observable during
execution

Connectives: sequence and parallel

44

f g

f

g

f then g

parallel
also

f
⋮

also
g

Connectives: choices

45

f g

kl c
match c
case l then

f
⋮

case k then
g

select
on a then

f
⋮

on b then
g

c are conditions
matched to l and k
by the system
⇒ internal choice

a and b are actions
selected by the user
⇒ external choice

f g

a b

Type checking: connectives

46

• Connectives make sure all resources are in scope

IFL’17, August 2017, Bristol, United Kingdom Tim Steenvoorden and Rinus Plasmeijer

Modules.
T�M�����

for each i � ` ei) �i

� ` module l where (ei)) [i �i
De�nitions.

T�D�����
� = {l : �l } � = {k : �k }

` {..} : �) � ` {..} : �) �
� [� ` f) �0 � ✓ �0

� ` definex using� as f yielding�) {x : � ! � }

T�S����

� ` sharex holding�) {x : Shared� }
Flows.

T�S������
� ` f) � � [� ` �) �

� ` f then�) � [�

T�P�������
for each i � ` fi) �i

� ` parallel (also fi)) [i �i

T�S�����
for each a � ` ca : Bool � ` fa) �a

� ` select (onawhen ca then fa)) \a �a

T�M����
� ` c : hl : �l il 2 L

for each l ` pl : �l) �l � [�l ` fl) �l

� ` match c (case l pl then fl)) \l �l

T�A����
� ` o : {l : �l } ! {k : �k }

� ` � : {l : �l } ` p : {k : �k }) �

� ` with� doo forp) �

Figure 5: Type system for scope like constructs. Typing
judgements are of the form � ` f) �, which we read as
“in a context �, �ow f collects its bindings in a new context
�.” The same applies to entities e and modulesm.

from a simply typed �-calculus perspective. It uses type judgments
from the other two categories, which we will discuss in a moment.

Typing a task �ow de�nition produces a singleton context, con-
taining only the arrow type of the de�ned task t . It adopts the
speci�ed type of the parameters and results, but not before en-
suring the body f yields a subset of the speci�ed return values.
Therefore, T�D����� is the rule allowing us to forget values by
truncating the scope.

T�S���� simply declares s holding something of type Shared� .
The rule T�M����� collects task and share de�nitions.

Values.
T�B������
x : � 2 �

� ` x : �

T�I������
i 2 Z

� ` i : Int

T�S�����
s 2 S

� ` s : String

T�R�����
for each l � ` �l : �l
� ` {l : �l } : {l : �l }

T�I�����
for some l l = k � ` � : �l

� ` k � : hl : �l i
Operations.

T�E����

� ` enter : Unit ! �

T�V���

� ` view : � ! Unit

T�G��
� ` x : Shared�

� ` getx : Unit ! �

T�P��
� ` x : Shared�

� ` putx : � ! Unit

T�T���
x : � 2 �

� ` x : �

T�H���

� ` ? : � ! �

Conditions.
(for each � and for each �)

T�O��
� ` c : �� � ` d : ��

� ` c � d : Bool

T�O��
� ` c : ��
� ` �c : ��

Figure 6: Typing rules for expressions. Judgements are of the
form � ` e : � , or “in context �, expression e has type � .”

5.2 Expression types
Typing values uses a classical typing judgement of the form � ` � :
� , or “in context �, value � has type � .” These and corresponding
typing rules for operations o and conditions c can be found in �g. 6.
Rules T�B������ and T�T��� look up names and types in the context
where rules T�I������ and T�S����� axiomate the types of integers
and strings. The rule T�R����� checks the type of every �eld and
T�I����� assigns a variant type to any labeled value. Note this rule
forces that labels of variant types should be unique.

Basic operation enter has no arguments and yields a value of
any possible type where view does the opposite. The get and put
operations have arrow types ensuring the operand is of a shared
type. Typing conditions are left abstract and can be instantiated for
the basic in�x and pre�x operators shown in eq. (8) and eq. (9).

5.3 Pattern types
The last category of typing rules contains patterns. These are shown
in �g. 7. Judgements combine type checking and scope production,
but omit the starting context �. They have the form ` p : �) �.

if workflow f yields environment Δ g can use it and yield Λ

both Δ and Λ can be used afterwards

Type checking: tasks

47

• Based on records with labeled values

IFL’17, August 2017, Bristol, United Kingdom Tim Steenvoorden and Rinus Plasmeijer

Modules.
T�M�����

for each i � ` ei) �i

� ` module l where (ei)) [i �i
De�nitions.

T�D�����
� = {l : �l } � = {k : �k }

` {..} : �) � ` {..} : �) �
� [� ` f) �0 � ✓ �0

� ` definex using� as f yielding�) {x : � ! � }

T�S����

� ` sharex holding�) {x : Shared� }
Flows.

T�S������
� ` f) � � [� ` �) �

� ` f then�) � [�

T�P�������
for each i � ` fi) �i

� ` parallel (also fi)) [i �i

T�S�����
for each a � ` ca : Bool � ` fa) �a

� ` select (onawhen ca then fa)) \a �a

T�M����
� ` c : hl : �l il 2 L

for each l ` pl : �l) �l � [�l ` fl) �l

� ` match c (case l pl then fl)) \l �l

T�A����
� ` o : {l : �l } ! {k : �k }

� ` � : {l : �l } ` p : {k : �k }) �

� ` with� doo forp) �

Figure 5: Type system for scope like constructs. Typing
judgements are of the form � ` f) �, which we read as
“in a context �, �ow f collects its bindings in a new context
�.” The same applies to entities e and modulesm.

from a simply typed �-calculus perspective. It uses type judgments
from the other two categories, which we will discuss in a moment.

Typing a task �ow de�nition produces a singleton context, con-
taining only the arrow type of the de�ned task t . It adopts the
speci�ed type of the parameters and results, but not before en-
suring the body f yields a subset of the speci�ed return values.
Therefore, T�D����� is the rule allowing us to forget values by
truncating the scope.

T�S���� simply declares s holding something of type Shared� .
The rule T�M����� collects task and share de�nitions.

Values.
T�B������
x : � 2 �

� ` x : �

T�I������
i 2 Z

� ` i : Int

T�S�����
s 2 S

� ` s : String

T�R�����
for each l � ` �l : �l
� ` {l : �l } : {l : �l }

T�I�����
for some l l = k � ` � : �l

� ` k � : hl : �l i
Operations.

T�E����

� ` enter : Unit ! �

T�V���

� ` view : � ! Unit

T�G��
� ` x : Shared�

� ` getx : Unit ! �

T�P��
� ` x : Shared�

� ` putx : � ! Unit

T�T���
x : � 2 �

� ` x : �

T�H���

� ` ? : � ! �

Conditions.
(for each � and for each �)

T�O��
� ` c : �� � ` d : ��

� ` c � d : Bool

T�O��
� ` c : ��
� ` �c : ��

Figure 6: Typing rules for expressions. Judgements are of the
form � ` e : � , or “in context �, expression e has type � .”

5.2 Expression types
Typing values uses a classical typing judgement of the form � ` � :
� , or “in context �, value � has type � .” These and corresponding
typing rules for operations o and conditions c can be found in �g. 6.
Rules T�B������ and T�T��� look up names and types in the context
where rules T�I������ and T�S����� axiomate the types of integers
and strings. The rule T�R����� checks the type of every �eld and
T�I����� assigns a variant type to any labeled value. Note this rule
forces that labels of variant types should be unique.

Basic operation enter has no arguments and yields a value of
any possible type where view does the opposite. The get and put
operations have arrow types ensuring the operand is of a shared
type. Typing conditions are left abstract and can be instantiated for
the basic in�x and pre�x operators shown in eq. (8) and eq. (9).

5.3 Pattern types
The last category of typing rules contains patterns. These are shown
in �g. 7. Judgements combine type checking and scope production,
but omit the starting context �. They have the form ` p : �) �.

if all values vl are of type τl and o is an operation taking τl’s to σk’s

pattern p binds values vk of type σk  
in a new environment Δ

Compiling

48

• using monadic operations

• and built-in iTask operators

Type Directed Interactive Workflow Modelling IFL’17, August 2017, Bristol, United Kingdom

Patterns.
T�A��

` _ : �) ú

T�C������

` l : �) {l : � }

T�R�����
for each l ` pl : �l) �l

` {l = pl } : {l : �l }) [l �l

T�U�����
for each l ` l : �l) �l

` {..} : {l : �l }) [l �l

Figure 7: Typing rules for patterns p.Judgements are a three
ary relation ` p : �) �, which we read as “when pattern p
has type � , we return all bindings in a new context �.”

We read this as “when in the empty context pattern p has type � ,
we produce a new context � with all matched bindings.”

Ignoring a value produces an empty contextú, as formalised in T�
I�����. Capturing a value produces a singleton context containing
only the information that label l is of type � . A rename pattern
matches every pattern with a type recursively and collects the
results. The unpack pattern does this implicitly for every label in a
record. This is used by T�D����� to create an initial context to type
a �ow’s body. Note that the pattern containing only label names is
sugar for an unpack pattern, as de�ned in eq. (4).

6 EXECUTING TASK FLOWS
In this section, we show how to create executable programs out of
a task �ow’s speci�cation. Because our language is based on the
same functional principles, iTasks seems to be a good �t to compile
our language into. Also, by using iTasks as a backend, we show our
language can express a subset of the programs expressible by the
iTasks system.

iTasks is implemented as a library in the functional program-
ming language Clean [Plasmeijer et al. 2011]. For most language
constructs, it is straightforward to translate them to Clean code
using iTasks. Figure 8 shows how to translate modules, de�nitions
and �ows into our target language by de�ning the function {| � |}
from task �ows to Clean code. The translation of the remaining
constructs is de�ned in �g. 9. In particular, we should take a care-
ful look at bound and free variables in our language and how to
translate our scoping rules correctly into our target language.

6.1 Translating language constructs
Let us discuss per language construct how the translation to Clean
and iTasks works.

Application and sequence. A task application in our language has
the form with� doo forp. As we have discussed during the expla-
nation of our type system, it actually serves two roles: (1) running
the operation o using the given arguments �; and (2) binding the
results to the given return pattern p. In a functional programming
language this would be equivalent to let p = o v. However, we
are not dealing with pure functions and we cannot rely on let or

Modules.

{|module l where (ei)|} =
module {|l |}
import iTasks

:: Br a1 a2 ... = Br1 a1 | Br2 a2 | Br3 a3 | ...

{|ei |} /* for each i */

De�nitions.

{| definex using� as f yielding� |} =
{|x |} :: {|� |} -> Task {|� |}
{|x |} {|Bound(�)|} =

{| f |}
return {|Bound(�)|}

{| sharex holding� |} =
{|x |} :: Shared {|� |}
{|x |} = share �{|x |}� default

Flows.

{|with� doo forp |} =
{|o |} {|x |} >>= \ {|p |} ->

{| f then� |} =
{| f |}
{|� |}

{| parallel (also fi)|} =
allTasks

[/* for each i */

{| fi |}
return (Bri {|Bound(fi)|})

] >>= \

[/* for each i */

Bri {|Bound(fi)|}] ->

{| select (onawhen ca then fa)|} =
return {|–a Free(ca)|} >>*

[/* for each a */

OnAction {|a |} (ifCond

(\ {|–a Free(ca)|} -> {|ca |})
({| fa |}
return {|res |}))

] >>= \ {|res |} ->

where res =
—
l Bound(fl)

{|match c (case l pl then fl)|} =
(case {|c |} of

/* for each l */

{|l |} {|pl |} ->

{| fl |}
return {|res |} /**/

) >>= \ {|res |} ->

where res =
—
l Bound(fl)

Figure 8: Translation of modules, de�nitions and �ows into
Clean using the iTasks library. Note the usage of the Bound
and Free functions, de�ned in �g. 10.

Type Directed Interactive Workflow Modelling IFL’17, August 2017, Bristol, United Kingdom

Patterns.
T�A��

` _ : �) ú

T�C������

` l : �) {l : � }

T�R�����
for each l ` pl : �l) �l

` {l = pl } : {l : �l }) [l �l

T�U�����
for each l ` l : �l) �l

` {..} : {l : �l }) [l �l

Figure 7: Typing rules for patterns p.Judgements are a three
ary relation ` p : �) �, which we read as “when pattern p
has type � , we return all bindings in a new context �.”

We read this as “when in the empty context pattern p has type � ,
we produce a new context � with all matched bindings.”

Ignoring a value produces an empty contextú, as formalised in T�
I�����. Capturing a value produces a singleton context containing
only the information that label l is of type � . A rename pattern
matches every pattern with a type recursively and collects the
results. The unpack pattern does this implicitly for every label in a
record. This is used by T�D����� to create an initial context to type
a �ow’s body. Note that the pattern containing only label names is
sugar for an unpack pattern, as de�ned in eq. (4).

6 EXECUTING TASK FLOWS
In this section, we show how to create executable programs out of
a task �ow’s speci�cation. Because our language is based on the
same functional principles, iTasks seems to be a good �t to compile
our language into. Also, by using iTasks as a backend, we show our
language can express a subset of the programs expressible by the
iTasks system.

iTasks is implemented as a library in the functional program-
ming language Clean [Plasmeijer et al. 2011]. For most language
constructs, it is straightforward to translate them to Clean code
using iTasks. Figure 8 shows how to translate modules, de�nitions
and �ows into our target language by de�ning the function {| � |}
from task �ows to Clean code. The translation of the remaining
constructs is de�ned in �g. 9. In particular, we should take a care-
ful look at bound and free variables in our language and how to
translate our scoping rules correctly into our target language.

6.1 Translating language constructs
Let us discuss per language construct how the translation to Clean
and iTasks works.

Application and sequence. A task application in our language has
the form with� doo forp. As we have discussed during the expla-
nation of our type system, it actually serves two roles: (1) running
the operation o using the given arguments �; and (2) binding the
results to the given return pattern p. In a functional programming
language this would be equivalent to let p = o v. However, we
are not dealing with pure functions and we cannot rely on let or

Modules.

{|module l where (ei)|} =
module {|l |}
import iTasks

:: Br a1 a2 ... = Br1 a1 | Br2 a2 | Br3 a3 | ...

{|ei |} /* for each i */

De�nitions.

{| definex using� as f yielding� |} =
{|x |} :: {|� |} -> Task {|� |}
{|x |} {|Bound(�)|} =

{| f |}
return {|Bound(�)|}

{| sharex holding� |} =
{|x |} :: Shared {|� |}
{|x |} = share �{|x |}� default

Flows.

{|with� doo forp |} =
{|o |} {|� |} >>= \ {|p |} ->

{| f then� |} =
{| f |}
{|� |}

{| parallel (also fi)|} =
allTasks

[/* for each i */

{| fi |}
return (Bri {|Bound(fi)|})

] >>= \

[/* for each i */

Bri {|Bound(fi)|}] ->

{| select (onawhen ca then fa)|} =
return {|–a Free(ca)|} >>*

[/* for each a */

OnAction {|a |} (ifCond

(\ {|–a Free(ca)|} -> {|ca |})
({| fa |}
return {|res |}))

] >>= \ {|res |} ->

where res =
—
l Bound(fl)

{|match c (case l pl then fl)|} =
(case {|c |} of

/* for each l */

{|l |} {|pl |} ->

{| fl |}
return {|res |} /**/

) >>= \ {|res |} ->

where res =
—
l Bound(fl)

Figure 8: Translation of modules, de�nitions and �ows into
Clean using the iTasks library. Note the usage of the Bound
and Free functions, de�ned in �g. 10.

• Clean as host language

Wrap up

Conclusion

What did we see?

• One language (DSL, subset of iTasks)
• Two representations:

• Visual
• Textual

How did we use it?

• Visual design tool
• Model tasks and workflows
• Modular and assistive
• Supported by a type system
• Compilable to iTasks

50

enter “Your details”

info

submit request

documents = documents
declaration = declaration

obtain declarations

declarations
documents

applicant = info

check conditions

verdict

applicant = info

view “Cannot apply”

info = –

TrueFalse verdict

request subsidy

51

request_subsidy :: () → Task ()
request_subsidy () =

enter “Your details” >>= λinfo →
check_conditions info >>= λverdict →
if not verdict then

view “Cannot apply” ()
else

obtain_declarations info >>= λ(decl, docs) →
submit_request decl docs

enter “Your details”

info

submit request

documents = documents
declaration = declaration

obtain declarations

declarations
documents

applicant = info

check conditions

verdict

applicant = info

view “Cannot apply”

info = –

TrueFalse verdict

request subsidy

where
obtain_declarations :: CitizenInfo

→ Task (CompensationDocs, ContractorDecl)
obtain_declarations applicant =

(provide_documents)
-&&-

(select_company >>= λcompany →
 provide_declaration info contractor)

