A Concise Guide to Clean 2.x StdEnv

Peter Achten
Radboud University, Netherlands

version november 2018
P.Achten@Qcs.ru.nl

November 10, 2018

Abstract

These notes serve as a brief guide to the Clean 2.x StdEnv, the set of library modules
that come with the standard distribution. It is assumed that the reader has basic
knowledge of programming in Clean.

1 Roadmap

Here is a brief overview of all Clean StdEnv modules in alphabetic order and in which section
you can find its explanation.

module section page || module section page
StdArray 1 StdBool 6
StdChar 6 StdCharList 18
StdClass 3 StdEnum 12
StdFile 7l StdFunc 19
StdInt 6 StdList 11
StdMisc 20 StdOrdList 16
StdOverloaded 1 StdReal 6
StdString 18 StdTuple 19

2 An overloaded API

In order to appreciate the Clean StdEnv, we first need to have a look at the role of overloading.
Two modules play a key role: StdOverloaded and StdClass.

2.1 StdOverloaded

This module defines all standard overloaded functions and operators. For historic reasons,
the keyword used for overloading is class, which must not be confused with object oriented
classes. The name is really an abbreviation for type class, or, even longer, type constructor

mailto:P.Achten@cs.ru.nl

2 AN OVERLOADED API 2

class. In StdOverloaded you find the usual suspects, such as arithmetic and comparison
operations.

Clean does no automatic coercion of values: if an Int value is expected, then an Int value
should be provided, and not a Real or a Bool (even if you can think of sensible coercions).
As an example, 1 + 2.5 does not type check in Clean. These kinds of coercions need to be
done explicitly by you, and for this purpose StdOverloaded provides two families of coercion
functions, viz.:

class toInt a::la -> Int // Convert into Int
class toChar a::la -> Char // Convert into Char
class toBool a:: la -> Bool // Convert into Bool
class toReal a::la -> Real // Convert into Real
class toString a :: la -> {#Char} // Convert into String

for coercing a value of some type to the given basic type, and

a: // Convert from Int

class fromChar a :: !Char -> // Convert from Char
a
a

:: !Int -> a
a

class fromBool :: Bool > a // Convert from Bool
a
a

class fromInt

class fromReal :: lReal > // Convert from Real
class fromString a :: !{#Char} —> // Convert from String

for coercing a basic type to a desired type. The earlier example can be transformed to the
following variants:

e toReal 1 + 2.5 (which yields 3.5 of type Real)
e fromInt 1 + 2.5 (which yields 3.5 of type Real)
e 1 + toInt 2.5 (which yields 3 of type Int)

e 1 + fromReal 2.5 (which yields 3 of type Int)

The overloaded constants zero and one are usually used in combination with the arithmetic
operators (+, -, *, and /). The zero and one instances should adhere to the usual algebraic
laws that you know from high school:

zero+x =x = I -+ zero
x T — zero
onexxr == I *one
x = x/one

Clean cannot enforce this, so you should make certain that these basic properties hold for
your custom defined instances.
Finally, one overloaded function is defined differently from all others:

class lengthm :: !(m a) -> Int

This is an example of a type constructor class. It says that length is overloaded for a type
constructor m that can hold values of type a. StdEnv contains only one instance of this
overloaded function: in StdList the type constructor is the list type ([1), and the instance
computes the length of a list (see also section .

2 AN OVERLOADED API 3

2.2 StdClass

When you are developing overloading functions (i.e. functions that use overloaded operators
and functions, and hence become overloaded themselves), you quickly notice that these func-
tions use similar groups of overloaded functions. A typical example is +, -, zero. A function
that uses these operators would normally have the following signature:

my_overloaded_function :: ... a ... | +, -, zero a
Instead of enumerating every single overloaded function or operator, you can use:
my_overloaded_function :: ... a ... | PlusMin a

Here, PlusMin is not an overloaded function, but a collection of overloaded functions or oper-
ators, and is defined in StdClass:

class PlusMina | + , - , zero a

Such a group of overloaded functions can be used in the overloaded context restriction of a
function. It automatically expands to the single member functions. For this reason, the same
keyword class is used.

Another frequently occurring group of overloaded functions is *, /, one. For this, another
group is defined in StdClass:

class MultDiva | * , / , one a

(Type constructor) classes can be combined to form larger classes. An example is the
following, that you can also find in StdClass:

class Arith a | PlusMin , MultDiv , abs , sign , ~ a

An overloaded function that uses (a subset of) these overloaded functions can have signature:
my_overloaded_function :: ... a ... | Arith a

which is much shorter than:

my_overloaded_function :: ... a ... | +, -, zero, *, /, one, abs, sign, ~ a

The classes IncDec and Emum are used to create lists with the dot-dot notation (see also
section .

The class Eq contains the overloaded equality test operator ==, and uses it to add the
inequality test <>, which is defined in terms of == in the obvious way:

class Eq a | ==

where
(<>) infix 4 :: !a 'a ->Bool | Eq a
() xy :==not (x ==y)

Here, <> is a derived member of the Eq class.
Finally, the Ord class derives a number of useful operators once < is given, viz. >, <=, >=,
min and max. This makes sense only if < is transitive: if a < b and b < ¢, then a < c.

3 DO IHAVE TO WORRY ABOUT !, *, ., AND U:? 4

3 Do I have to worry about !, *, ., and u:?

Clean types are annotated, i.e. there is additional information attached to the type of func-
tions, operators, and data types. There are two sorts of annotations: strictness (!) and
uniqueness (*, ., u:). To understand the bare type of functions and operators, you usually
do not need to know the meaning of these annotations, and can therefor safely ignore them.
There are two notable exceptions: when working with files (section and when working
with arrays (section @ The annotations convey information of the behavior of a function
that cannot be derived from its bare type only.

3.1 Strictness annotations

The strictness annotation is the ! symbol, prefixed immediately before the annotated type.
Clean is, by default, a lazy language: it evaluates a computation only if it is really needed to
obtain the result of the program. Usually, a computation becomes needed when it is passed
as an argument to a function that in one way or another needs to know (part of) the value of
that computation. For instance, to compute the sum of two computations, surely + requires
the values of both its arguments. Another example: to take the head element of a list,
surely hd must inspect the beginning of the list data structure that it is applied to. This is a
property of the function, not of its type. Because types are used to communicate properties
of functions in definition modules, they are suited candidates to piggy back this information,
and therefor we annotate the types of functions:

class (+) infixl 6 a :: lala->a //in StdOverloaded
instance + Int // in StdInt
hd :: !'[a] > a // in StdList

By declaring an instance of + for type Int, you really make the following function available:
(+) infix] 6 :: !Int !Int -> Int

Both arguments are annotated with !, and hence you know that + will have to evaluate both
arguments in order to compute a sum. Similar, hd is defined as:

hd [a:x] =a
hd [] abort "hd of [1"

The pattern match on the list argument forces the evaluation of any argument passed to hd
to the structure of the first list constructor, but no further. Therefor, it is safe to compute:

Start = hd [42 : abort "That hurt!"]

3.2 Uniqueness annotations

Clean is a pure and lazy functional language. To be more precise, it is a pure, lazy graph
rewriting language, i.e.: it allows sharing of arbitrary (sub)computations. This is great from
a language engineers point of view because it allows easier reasoning as well as a host of
optimizing language transformations. However, can a language that is pure (no assignments)

4 MODULES FOR BASIC TYPES 5)

and lazy (no control flow) and that shares computations (long living computations) do inter-
esting things such as file I/O? graphical I/O? use memory efficiently? There is a long answer
and a short answer, and I’ll stick to the short answer here: yes, they can.

A slightly longer answer is: a function can update an argument in place (which is an
assignment) if only it knows for sure that it is the only piece of code in the program at
the point of evaluation that has access to that argument. Put in other words: if a function
has unique access to a data structure, then it can reuse the memory of that data structure
without harming any of the highly desirable properties of being pure, lazy and shared.

A function can handle its argument(s) uniquely, i.e.: it does not introduce sharing on
that argument. This is a property of the function, and is always inspected by the uniqueness
analysis of the Clean compiler. However, it is not enough that the function treats this
argument uniquely to allow updates on that argument, it must also be certain that that
argument is unique at every time that the function is called. This can of course not be
guaranteed by the function, but only by the calling party. To let them know that this
function can update its argument, it annotates the type of that argument with the uniqueness
attribute, *. This states that the function will always update its argument. Examples
are opening and closing files, writing data to file, opening windows and menus in a GUI
program. In case of polymorphic arguments, a function can tell its environment that it does
not change the uniqueness of that argument by putting the . annotation in all occurrences
of type argument in its type. This means that you can call the function with either a unique
argument or a shared argument. An example is the hd function from StdList:

hd :: '[.a] > .a

You can give it a list that contains elements with shared computations ([a]) but also a list
in which none of the elements have shared computations ([*al]). In either case, hd returns
the first element of that list, without changing its uniqueness property.

In some cases, these uniqueness dependencies require that you can name them so that
you can refer to them in other uniqueness constraints. In that case, you can use a name, say
u, and attach it to a type with u:. There are many examples in StdList. One such function
is tl:

tl :: tu:[.a] —> u:[.a]

This type says that you can apply tl to both a list with shared computations as well as a
list without shared computations, but the uniqueness of the result list is exactly the same
(namely u) as that of the argument list.

4 Modules for basic types

Now that we have dealt with overloading and (type constructor) classes as well as annotations
(!, %, ., u:), we can inspect the modules that define operations on the basic types of Clean.
Clean offers six basic types: Bool, Int, Real, Char, File, and String. The String type is a bit
special because it is really a composite type (array of unboxed Chars, to be precise) and is used
together with the StdArray module, as well as lists, so I treat Strings separately in Section
[7l For each basic type Type, a separate module named StdType exists. They consist mostly
of instance declarations of the overloaded functions that are defined in the StdOverloaded
module that was discussed in Section

4 MODULES FOR BASIC TYPES 6

4.1 StdBool

StdBool is the smallest of the basic type modules. Besides a few overloaded operations (==
and coercion), it provides the usual boolean operators & (conditional and), || (conditional
or), and not (negation). Note that the types of & and || suggest that these operations are
conditional:

(1) infixr 2 :: 'Bool Bool —> Bool
(&%) infixr 3 :: 'Bool Bool —> Bool

because the second argument has no strictness annotation ! (see Section [3.1). If these op-
erations weren’t conditional, then they would have to evaluate both arguments in all cases,
and therefor would be strict in both arguments.

4.2 StdInt

StdInt implements many of the arithmetic overloaded operations that you encounter in
StdOverloaded. Besides these, it also allows you to do bitwise manipulation of integer numbers.
These are:

(bitor) infixl 6 :: !Int !Int -> Int
(bitand) infixl 6 :: !'Int !Int —> Int
(bitxor) infixl 6 :: !Int !Int —> Int

(<) infix 7 :: !Int !Int —> Int
> infix 7 :: !Int !Int -> Int
bitnot :: 1Int -> Int

4.3 StdReal

StdReal is very similar to StdInt except that it does not offer bit manipulation operations,
but instead gives you access to the usual trigonometry operations, as well as raising powers,
taking logarithms, and computing the square root.

4.4 StdChar

StdChar defines instances for basic computations and coercion on ASCII characters. Clean
does not support Unicode. A few additional coercion functions are defined on the value of
their Char argument:

digitToInt :: !Char -> Int // Convert Digit into Int
toUpper :: !Char -> Char // Convert Char into an uppercase Char
tolower :: !Char -> Char // Convert Char into a lowercase Char

(digitToInt c) yields the integer value of the digit representation of that value if ¢ € {°0’
...79’}. (toUpper c) yields the upper case character if ¢ € {’a’ ...’z’}, and ¢ otherwise.
(toLower c) yields the lower case character if ¢ € {’A’ ...°Z’}, and c otherwise.

StdChar also defines a number of predicates on Char values, that are useful when working
with texts.

4 MODULES FOR BASIC TYPES 7

isUpper :: !Char —> Bool // True if argl is an uppercase character
isLower :: !Char -> Bool // True if argl is a lowercase character
isAlpha :: !Char -> Bool // True if argl is a letter

isAlphanum :: !Char -> Bool // True if argl is an alphanumerical character
isDigit :: !Char -> Bool // True if argl is a digit

isOctDigit :: !Char -> Bool // True if argl is a digit
isHexDigit :: !Char -> Bool // True if argl is a digit

isSpace :: !Char => Bool // True if argl is a space, tab etc
isControl :: !Char —> Bool // True if argl is a control character
isPrint :: !Char -> Bool // True if argl is a printable character
isAscii :: IChar -> Bool // True if argl is a 7 bit ASCII character

4.5 StdFile

StdFile is the only module in StdEnv that deals with the ‘impure’ external world. Clean
does offer a lot of other libraries for these kinds of operations, but they are not part of
StdEnv. The external world is known by the type World. There is only one world, so most
functions expect that single world and update it. Hence, their type signature is something like

. *World ... => ... *World The functions in StdFile are grouped into the following
categories: managing files, working with read-only files, and working with read-write files.
These are explained below.

4.5.1 Managing files

In order to work with a file, you need to open it, and close it when you’re done. These file
management functions are collected within one (type constructor) class, called FileSystem:

class FileSystem env where

fopen :: !{#Char} !Int !*env -> (!Bool,!*File, !*env)
fclose :: !*File I*xenv —> (!Bool, Ixenv)
stdio :: Ixenv —> (1¥File, ! *env)

sfopen :: !{#Char} !Int !xenv -> (!Bool,! File, !*env)

In StdFile, two instances of this class are provided. The only relevant instance is of type
World, the other (Files) is only present for historic reasons (I can tell you about it if you
really want to know). So we have:

instance FileSystem World

which gives us the following functions to play with:

fopen :: !{#Char} !Int !sWorld -> (!Bool, !*File, !*World)
sfopen :: !{#Char} !Int !+World -> (!Bool,! File, !*World)
stdio :: IxWorld —> (1¥File, ! *World)
fclose :: !4File IxWorld —> (!Bool, IxWorld)

There are three functions to open a file: fopen, sfopen, and stdio. The difference between
fopen and sfopen is that fopen opens a file that can be written to and read from (it is updated,
hence it must be unique), and that sfopen opens a read-only file (it can not be updated, hence

4 MODULES FOR BASIC TYPES 8

it need not be unique). The function stdio opens a special file, stdio, that connects with the
console for simple line-based I/O programs (it is updated, hence it must be unique). Only
the unique files need to be closed when you’re done with them. This is done with fclose.
Note that if you accidently forget to close a unique file, you can not be certain that all data
is actually written to that file due to internal buffering. It is also impossible to reopen that
file within the same program for further processing.

The first argument of (s)fopen is the file name. If you simply pass the name of a file,
without any directory path before it, then this works on the current directory of the applica-
tion. If the file name also consists of a directory path, then that location is used. The second
argument of both functions controls the file mode. This is an integer value, and should be
one of:

FReadText :==0 // Read from a text file
FiwriteText :==1 // Write to a text file
FAppendText :== 2 // Append to an existing text file
FReadData :== // Read from a data file
FWriteData :== // Write to a data file
FAppendData :== // Append to an existing data file

Use on of the first three modes if you wish to work with Ascir files, and use one of the
last three modes if you wish to work with binary files. If you want to read either file, use
FReadMode; if you want to clear the file content and write new data, use FWwriteMode; and if
you want to extend the current content, use FAppendMode. The third parameter must be the
current world, of which there is only one anyway.

A few examples: to open a text file, called "test.txt", and read its content:

(ok,file,world) = fopen FReadText "test.txt" world
To add data to a log file in some standard directory:

(ok,file,world) = fopen FAppendText
"C:\\Program Files\\MyProgram\\settings.log"

world

(s)fopen returns a boolean to report success (True only if the file could be opened), the actual
file, and the updated world in which the file has been opened. The file result can only be
used if the file could be created. Any attempt to use it results in a run-time error, so check
your boolean! Hence, typical idiom is:

(ok,file,world) = fopen ...
| not ok abort "The file could not,_opened.\n"
... // now you know it is safe to use file

or, if you dislike #:

case fopen ... of
(False,_, world) = ... // opening failed, continue with world
(True,file,world) = ... // opening succeeded, safe to use file

The typical structure of a basic file manipulating program is:

4 MODULES FOR BASIC TYPES 9

Start :: !sWorld —> *World

Start world

(ok,file,world) = fopen mode name world

| not ok abort ("Could not _open file /" +++ name +++ "’ .")
file = do_something_interesting with file

(ok,world) fclose file world

| not ok = abort ("Could not close fileg /" +++ name +++ "’.")
| otherwise = world
where

mode = // file mode of your choice

name = // file name of your choice

Finally, there is one function that allows you to change the file mode of a file that has
already been opened with fopen:

freopen :: !*File !Int -> (!Bool, !*File)

The integer argument is the new file mode that the file should have. Again, the boolean
returns True only if this operation was successful, and the new file value can only be used
safely if that was the case.

4.5.2 Read-only files

Read-only files are created with sfopen, as explained above. Because they are not updated,
they can be shared safely, and hence do not require to be unique. Their type is therefor just
File.

The following read operations are available on read-only files:

sfreadc :: IFile -> (1Bool, !Char, IFile)
sfreadi :: IFile -> (1'Bool, !'Int, 1IFile)
sfreadr :: IFile -> (1Bool, 'Real, IFile)
sfreads :: IFile !Int > ('x{#Char}, |File)
sfreadline :: !File > (Vx{#Char}, |File)
sfend :: IFile -> Bool

To read the next, single, Char (Int, Real) value from the file, use sfreadc (sfreadi, sfreadr).
Because reading advances the internal read pointer of the file, these functions need to return
a new file value. As usual, the boolean result indicates successful reading.

To read a maximum of n Char values from file, use sfreads file n. To read the next line
from file, use sfreadline. A line is a sequence of Chars, returned as a String, terminated by
a newline character. If the end of the file was not terminated with a newline character, then
the String simply contains the remainder of the file content. You can test whether you’ve
reached the end of file with sfend file.

The above functions read a file from start to end. In some cases you want to seek a file,
i.e. start at specific positions within a file. It is sometimes useful to determine the current
value of the internal read pointer of a file. This is done with sfposition file which returns
that value.

sfposition :: !File —> Int

4 MODULES FOR BASIC TYPES 10

The internal read pointer can be set with sfseek which expects three arguments: the first is
the file itself and the second and third argument determine the new value of the internal read
pointer. This third argument determines from which relative position the second argument,
an offset, should be interpreted:

FSeekSet: set read pointer to offset;

FSeekCur: advance read pointer offset characters;

FSeekEnd: advance read pointer offset characters from the end of the file.
sfseek :: IFile !Int !Int -> (!Bool, !File)

FSeekSet :== 0 // New position is the seek offset

FSeekCur :== 1 // New position is the current position plus the seek offset
FSeekEnd :== 2 // New position is the size of the file plus the seek offset

4.5.3 Read-write files

Read-write files support the same read operations as read-only files do. The names of these
functions are the same as of the read-only operations with the prefix s skipped. The types
of the file, which can be updated, is *File. Hence, the operations that have been discussed
above for read-only files appear similarly for read-write files (the only difference is that fend
and fposition have to return a new file value):

freadc 11 I¥File -> ('Bool, !Char, 1x¥File)
freadi i1 I¥File -> (!'Bool, !Int, 1%¥File)
freadr 1 I4File -> (!1Bool, !Real, 1xFile)
freads i 1¥File !'Int > (1x{#Char}, ! ¥File)
freadline :: !*File > (Vx{#Char}, | *File)
fend :: I¥File -> (1Bool, 1x¥File)
fposition :: !*File -> (!Int, 1¥File)
fseek :: I¥File !'Int !'Int —> (!Bool, 1xFile)

Besides these operations, which are basically the same as for read-only files, read-write files
offer one additional reading function:

freadsubstring :: !Int !Int !*{#Char} !*File —-> (!Int, !*{#Char}, !*File)

The meaning of freadsubstring start end string file is that (end-start) characters are read
from file (if not possible, then less characters are read). Assume n characters are read.
These n characters are updated in string (which is why it must be unique), starting at start,
and ending at start+n-1. The result is n, the updated string, and the read file.

To write data to read-write files, use one of the following functions:

furitec HK !Char I*xFile —> *File
furitei M Int I*xFile —> *File
fwriter B IReal 1¥File —> *File

5 WORKING WITH LISTS 11

furites i I{#Char} !#File -> #File
furitesubstring :: !Int !Int !{#Char} !*File -> *File

To write a Char (Int, Real, String) to file, use furitec (fwritei, fwriter, furites). To write
the slice s/ (start,end) to file, use furitesubstring start end s file.

An alternative, and more concise, notation for writing data is the following overloaded
operator:

class (<<<) infix]l a :: !'*File 'a —> *File

instance <<< Char
instance <<< Int
instance <<< Real
instance <<< {#Char}

Its instance implementations correspond with fwrite(c,i,r,s) respectively. Because <<< is
left-associative, you can write multiple data in one go:

file <<< "This_line has /' <<< 4 << " _words " << ’.’

Robust programs should check whether file manipulations have succeeded. After you have
written data to file, you can check whether this was successful with ferror file. Hence,
typical idiom of its use is:

file = file <<< "This line has " <<< 4 <<< " words " <<< 7.’
(fail,file) = ferror file

| fail abort "Could, not write data file."

... // now you know it is safe to use file

If you have created a read-write file, and are completely satisfied, then you can turn it
into a read-only file with fshare :: !*File -> File. Note that you cannot open this file any
longer within the program for further writing.

Finally, there is one special read-write file that is particularly useful for writing trace
statements:

stderr :: *File

It is special because it creates a read-write file that can be opened arbitrarily many times in
a program. This is not possible for any of the other read-write files, which need to be closed
before they can be opened. Note that with the Clean distribution, a more convenient tracing
module is provided, viz. StdDebug,.

5 Working with lists

Lists are the workhorses of functional programming languages. The language Clean is no
exception to this rule. There is a lot of support for list operations, both in the language as well
as in the standard environment (in particular the modules StdList.dcl and StdOrdList.dcl).
This section presents this support.

WORKING WITH LISTS 12

5.1 List notation

In order to work with lists, you first need to denote them. The simplest way of denoting lists
is to enumerate all elements. Here are a number of examples:

Start = ([1 1.
, [1,2,3,4,5,6,7,8,9,10] 2.
, [1..10] 3.
s [;a: . JZ7] 4.
, a’, ¢ .. ’z7] 5.
, [10.0, 9.0 .. 0.0] 6.
) 7
The simplest list of all is the empty list (line 1) which contains no elements. The type of an
empty lists cleanly expresses that we do not know its element type: [1 :: [a]. In line 2 a

list is created with 10 elements, viz. 1 upto 10 (inclusive). If there is some sort of regularity,
then it is much more concise to use the .. notation (dot-dot notation). Examples are in lines
3 — 6. The list on line 3 has the same value as the one on line 2, and both are of type [Int].
The list on line 4 has value

[)aJ ’7bJ ”C,,,d,,,e, ’7f1’7g7,)h7 ,7i) ’7j)’)k)’)17 ,)m)

,)n7 ’)O) s JP) ,)q) ’)r) ’)S) , Jt) ,)u7 ’)V) s JW) s)X) ’)y) ’)Z)]

and type [Char]. A less cumbersome notation for Char-lists is:

[’abcdefghi jklmnopgrstuvwxyz’]

which has exactly the same value as above. The examples on lines 5 and 6 shows that lists
can also be enumerated that have a regular ‘gap’ between successive elements. The size of the
gap is determined by computing the difference between the first two elements. Next elements
are computed by keeping adding the gap until the border value has been reached. The list
on line 5 has value

[’acegikmogsuwy’]
and type [Char] and the list on line 6 has value
[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0]

and type [Real].

If you use dot-dot notation, you are required to import the module StdEnum. This module
is automatically imported if you import StdEnv. StdEnum contains the functions that create
the list when dot-dot notation is used. The Clean compiler transforms these expressions to
these functions. This also explains why it is possible to use dot-dot notation for types defined
by yourself, as soon as you have defined proper instances of the corresponding class Enum.

5.2 ZF-expressions

A powerful way to create and manipulate lists are ZF-expressions, or list comprehensions.
The name ZF-expressions comes from the Zermelo Frank notation for sets in mathematics.

WORKING WITH LISTS 13

If you have a Clean predicate isPrimeNumber :: Int -> Bool which determines if a number is
pm’mﬂ then the list of prime numbers can be created by:

all primes :: [Int]
all_primes = [x \\ x <= [1..] | isPrimeNumber x]

Here, the expression x <- [1..] is a generator. In this case it is the infinite list of integral
numbers, starting with 1 and incremented by 1. The generator determines the subsequent
value of x. Just as in function definitions, conditions are preceded by a | symbol. In this
case the condition is isPrimeNumber x, for each x that is produced by the generator. Hence,
the value of the function all_primes is an infinite list of integral numbers, in ascending order,
starting from 1, that are also prime. The result of this function is therefor (at least, its
beginning):

[1,2,3,5,7,11,13,17,19,23,

In a ZF-expression the result x can be manipulated as well. Suppose you need the set of
squares of all prime numbers, then you can write this as follows:

all_prime_squares :: [Int]
all_prime_squares = [x*x \\ x <- [1..] | isPrimeNumber x]

With the other function definition, you could also have defined it as follows:

all_prime_squares :: [Int]
all_prime_squares = [x*x \\ x <- all_primes]

One remark on the use of infinite datastructures: in a functional language such as Clean it is
no problem to define and manipulate them, as long as you don’t try to compute them entirely.
That will lead to a non-terminating program. The following function uses this property to
compute the first hundred prime numbers:

first_100_primes :: [Int]
first_100_primes = take 100 all_primes

The standard function take n xzs takes the first n elements of the list xs and has type
take :: Int [a] —> [a] (see Section |5.4)).
An (inefficient) way to create the function isPrimeNumber is the following ZF expression:

isPrimeNumber :: Int —-> Bool
isPrimeNumber n = [1,n] == [divisor \\ divisor <- [1..n] | n rem divisor == 0]

This function examines too many cases to determine whether a number n is prime. However,
it should be obvious that it correctly determines the desired property.

5.3 More ZF expressions

In the above section we have created lists with ZF expressions that are constructed with
generators and conditions. It is also possible to combine generators in two ways:

1. If as and bs are lists, then the Carthesian product of both lists can be defined as:

LA number n is prime if its only integral divisors are the numbers 1 and n.

WORKING WITH LISTS 14

product as bs = [(a,b) \\ a <- as, b <~ bs]
Assume that as = [1,2,3] and bs = [’a’,’b’], then:
product as bs = [(1,’a’),(1,’b”),(2,’a’),(2,’b’),(3,’a’), (3,’b’)]
The length of the resulting list is equal to the product of the lengths of as and bs.
2. If as and bs are lists, then the elements of both lists can be combined element by element
(zipped):
zipped as bs = [(a,b) \\ a <- as & b <~ bs]
Assume that as = [1,2,3] and bs = [’a’,’b’], then:
zipped as bs = [(1,’a’),(2,°b’)]
The length of the resulting list is the length of the shortest list.

All ways to create and manipulate ZF expressions that have been presented above can be
combined in arbitrary ways. As a result, ZF expressions are flexible tools of expression to
work with lists.

5.4 StdList: operations on lists

In this section the most frequently used functions of module StdList are discussed. These
functions are grouped according to what you would like to do with lists.

5.4.1 I want to compare lists:

e as == bs: yields True only if as and bs have the same number of elements that also have
the same value. Hence, [aq...a,] == [by...by] isTrueonly if n =m and V1 <i<n:
a; == bz

e isFmpty as: yields True only if as = [J.

5.4.2 I want to know how many elements a list has:

e length [a;...a,] =n, and length [] =0.

5.4.3 I want to find an element of a list:
e isMember x [ag...a,] = True only if = a; for some 0 <i < n.

e isAnyMember [z ...Z,] as = True only if isMember z; as for some 0 < i < n.

5.4.4 1 want to select an element of a list:
e [ag...a,] "' i=aq;,.
e hd [ag...a,] = agp.

e last [ag...a,] = ay,.

WORKING WITH LISTS 15

5.4.5 I want to build a shorter list:
o [ag...an) % (4,7) =lai...aj] (0<i<j<n).
o tliap...an] =[a1...a,] (n>0).
e init [ag...an] =[ao...an—1] (n>0).
o take k [ag...an] =[ag...ak—1] (0<k<n+1).

e takeWhile p [ag...an] = [ag...ar] where (p a;) = True for all a; in the resulting list,
and (p ap41) = False.

e drop k [ag...an] = [ak...an] (0 < k).
e dropWhilep [ag...an] = [a...an] where (p a;) = True for all i < k, and (p ay) = False.
o filterpa =[x \\ x<-al pal.
e removeAt i [ag...an] =[a0...Qi—1,Qit1 ... Gp).
e removeMember x as removes the first occurrence of = from as.
e removeMembers [xg . ..Z,| as removes the first occurrence of g, 1 ...z, from as.
e removeDup as removes all duplicate elements from as (using ==).
e removeIndex e[Tg...Ti—1 € Tit1..-Tn] = (4, [To.. . Tiz1, Tigt1...2y]), if € # x; voor
0<j <.
5.4.6 I want to build a bigger list:
e [ag...am]| +*+[bo...bp] =ao...am,bo...by].
o flatten [lg...l,] =g ++ 11 ++ ... ++ [,.
e insertAti x [ap...an] =[ag...ai—1,2,0;...ap].
e insert p z [ag...an] =[ag...ai—1,Z,a;...ay], such that (p x a;) = True, and for each

0<j<i:=(pxaj).

5.4.7 I want to modify a list, but retain the number of elements:
emap fa=[fx\\x<-al
e reverse [ag...a,| = [an ... agl.

e updateAt i x [ag...an] = [a0 ... Qim1,Z, Qix1 - .- Ap]-

WORKING WITH LISTS 16

5.4.8 I want to divide lists:
e splitAt i a = (take i a,drop i a).
e span p a = (takeWhile p a,dropWhile p a).

e unzip [(a,o, b())7 (al, bl) S (an, bn)] = ([ao, aj ... an], [bo7 by... bn])

5.4.9 I want to create a list:
e iterate f z =[x, f =, f (fx),f (f (fz))..]
e repeat x = [x,z,x...].
e repeatn n x =take n (repeat).
e indexList [ag...an] =[0...n].
e zip ([ag, a1 ... au],[bo, b1 .. .bs]) = [(ao, bo), (a1,b1) ... (an, by)]-

[] Zip2 [ao, aj ... (ln] [bo, b1 N bn] = [((10, bo), (al, bl) [N (an, bn)}

5.4.10 1 have a list and want to reduce it to a single value:
e foldl f 7 [ag...an)=f (...(f (f rao) a1)...) an.

e foldr f r[ag...an]=fao (far (..(fan7r)...).

5.5 StdOrdList: operations on sorted lists

Being sorted is an important property for data structures. The module StdOrdList contains
functions that manipulate sorted lists. The most frequently used functions are:

e sort as sorts the elements of as using the ordering < that is defined on values of the
list element type.

e merge as bs = sort (as ++ bs) (but in a smarter way...). Important: merge assumes
that as and bs are sorted.

e maxList as determines the maximum element of as using the ordering < that is defined
on values of the element type of as. maxList [] yields a run-time error.

e minList as determines the minimum element of as using the ordering < that is defined
on values of the element type of as. minlist [] yields a run-time error.

Of each of the functions described above, Std0rdList also provides a . ..By version, which
is parameterized with a comparison function that is used instead of the < ordering on values
of the list element type.

6 WORKING WITH ARRAYS 17

6 Working with arrays

Clean supports arrays. Arrays differ from lists in several aspects:
e Arrays always have a finite number of elements, whereas lists can be infinitely long.

e Element selection is in constant time (O(1)), whereas list element selection is linear

(On)).
e Arrays consume contiguous blocks of memory, whereas a list is a linked data structure.

In Clean, the type String is implemented as an array of characters. Hence, everything that
is said here about arrays also applies to Strings. For further manipulations of Strings, I refer
to section [

6.1 Array notation

Arrays are created by enumeration of their elements, in a similar way as with lists, except
that the delimiters are { and } instead of [and 1. So, {} denotes an array with zero elements,
and {1,2,3,4,5} and array with five elements, viz. 1 up to 5.

Unfortunately, there is no dot-dot notation for arrays, so you can’t write down {1..10%}
as you can for lists. However, if you happen to have a list, say 1list = [1..10], then you can
create an array with the same elements as follows:

{e \\ e <~ list}

You can also use another array as a generator. Say you have array = {1,2,3,4,5}, then you
can create another one:
{f e \\ e <-: array?}

Note the different symbol for extracting elements from an array generator (<-:). Because
you can use both arrays and lists as generators, you can easily transform lists into arrays and
vice versa:

[e \\ e <-: array]
{e \\ e <~ 1list}

toList array
toArray list

Array creation is overloaded: the same expression, say myArray = {1,2,3,4,5}, can be one of
three concrete types (I refer to the language manual for more details):

e myArray :: {Int}, which is a lazy array. This is basically an array of unevaluated element
expressions.

e myArray :: {!Int}, which is a strict array. In such an array, all expressions are evaluated
strictly.

e myArray :: {#Int}, which is an unboxed array. Here, the element type must be a basic
type. In such an array, the element values are evaluated strictly and stored subsequently
within the array.

7 WORKING WITH TEXTS 18

6.2 Array manipulation

Arrays are overloaded, and this is also the case for its manipulation functions. Clean provides
syntax for these operations, but internally they are translated to the functions that are
imported via StdArray (in a similar way as those for dot-dot expressions with lists). Because
unboxed arrays are only defined for basic types, there must be relation between the sort of
array (lazy, strict, unboxed) and its element type. For this reason, the class Array that defines
these operations is a true type constructor class:

class Array .a e where

select :: 1.(a .e) 'Int -> .e

uselect :: lu:(ae) !'Int > x(e, 'lu:(ae))
size :: 1.(a .e) -> Int

usize :: lu:(a .e) => x(1Int, 'u:(a .e))
update 1 !x(a .e) !'Int .e —> *(a .e)
createArray :: !Int e -> *x(a e)

replace :: Ix(a .e) 'Int .e > *(.e, !'x(a .e))

The array element selection operations array. [index] and array![index] are translated to
select array indexr and uselect array inder respectively. The zero-based indexr must be less
than the size of the array. If you need an array for subsequent destructive updates, then you
should use uselect, and otherwise you can use select.

To determine the size of a non-unique or a unique array, use size and usize respectively.
Both return the size of the array in constant time.

Unique array updates {array & [index] = expr} are translated to update array index
expr. A useful function is createArray which takes an integer that represents the num-
ber of elements an array should have, and a value for each of the elements. For instance,
createArray 1000 "Hello World!" creates a unique array (so that it can be updated destruc-
tively later on) that consists of 1000 "Hello World!" text elements. The function replace is
useful when working with arrays of unique elements: it updates the array at the given index
position with the new value, and returns the old value at the same position.

7 Working with texts

As was already mentioned in Section[d] the String type is a basic type in Clean, even though
it is a composite type, viz. an unboxed array of characters. There is special notation
for convenient creation (myString = "Hello World!"), and there is a module, StdString, that
contains useful operations on strings. Because strings are also arrays, everything you can do
with arrays, you can also do with strings (see Section @

StdString provides string comparison (== and <) and the usual conversion instances.
Strings can be sliced (%) and concatenated (+++). If you need to work with unique strings,
then +++. can be used to produce a unique string for further destructive updates. You can
update the ith element (counted from zero) of a string s with a new character ¢ with the :=
operator: s:=(¢,c). For instance,

Start = let hello = "Hello World!" in hello := (size hello-1,’7’)

results in

8 WORKING WITH TUPLES 19

Hello World?
Strings are arrays, so the following program produces the same result:
Start = {"Hello World!" & [11]=’7"}

If you need to manipulate strings, it is in many case more convenient to use lists, simply
because StdList offers a lot of list manipulating functions. StdList contains two functions for
this conversion: the fromString and toString instances for character lists.

Module StdCharList offers a number of functions that aim at ‘word processing’ function-
ality. Usually you get a big chunk of text as a single string, containing newline characters
which indicate line ends. Given such a string, you can easily convert it to a list of lines (where
each line is a list of characters) with mklines. Note that mklines removes the trailing newline
character from each line. You can then process the line elements, and glue the lines back
together into a big string with flatlines, which inserts the appropriate newline characters
back at the end of each line.

If you need to align lines of text to the left, right or center, given a certain column width,
then you can use one of the functions 1justify, rjustify, or cjustify respectively. As a typical
example, the following function transforms a string into another string in which all lines are
centered for a certain column width:

centerAlllLines :: Int —> String -> String
centerAlllLines width
= toString o flatlines o (map (cjustify width)) o mklines o fromString

Finally, the little utility function spaces n produces a list of n spaces (it is literally imple-
mented as spaces n = repeatn n ’.’.

8 Working with tuples

StdTuple contains a number of functions for easy access to tuples and triplets. To select the
first or second part of a tuple, use f£st or snd respectively. To select the first or second or third
part of a triplet, use £st3 or snd3 or thd3 respectively. Tuples and triplets can be compared
for equality (== instance) and lexical ordering (< instance). If you have two functions f and
g, then they can be applied to the first and second component of a tuple with app2 (f,¢).
Use app3 (f,g,h) in case of triplets. Finally, there are two conversion functions to switch
between a function of type (a,b) => c to a b => ¢ (curry) and vice versa (uncurry).

9 StdFunc

StdFunc contains a number of standard higher order functions.
The first two are id and const with trivial implementations: id x = x and const a b = a.
When using higher order functions, you sometimes notice that the function that you want
to pass to such a function has the arguments in the wrong order. Suppose you have a function
f of type a b => ¢ but need a function in which the argument order is flipped, hence of type
b a => c¢. Then flip f is a function of type b a => c. Again, flip is implemented trivially as
flipfba=fab.

10 STDMISC 20

The function composition operator, o, is the same as in high school: if you want to
apply function g after function f, then you can this with g o £. Function composition is
concisely defined as: (0) g £ = \x = g (f x) (note that it must have arity two because it is
an operator).

A function that you encounter in literature is twice, which is defined astwice f x = £ (f x).

StdFunc contains a number of functions that resemble imperative control structures:

while :: !'(a => .Bool) (a->a) a-> a
until :: '(a -> .Bool) (a—>a) a-> a
iter :: !Int (.a—> .a) .a—> .a

Given a predicate p, and a computation £ on some arbitrary data type, and an initial value
vy, while p f vg applies f to subsequent values v; = £ vy while p holds for these values.
The value returned is the first v,, for which p v,, is false. The computation until p f vq is
basically the same, except that the computations are performed as long as p does not hold,
and the value returned is the first v,, for which p v, is true. The computation iter n f vg =
f* v, provided that n > 0.

The function seq is given a list of computations, [fg, ...£,] that all modify a value of
some arbitrary type, and computes their subsequent application in left-to-right order: f,
o0 f,_10...0fy. The function seqlist is similar, except that the functions in the list not
only modify a value of some arbitrary type, but also return some additional information.
seqList applies the functions in the list in the same order as seq does, but also collects these
additional results in the same order, and returns them together with the altered value. Both
functions are most often used in combination with unique data structures, such as files.

The final two functions are extremely well known in literature, and they are known
as the monadic state combinators (for clarity, I show the types here without uniqueness
annotations):

(‘bind®) infix 0 :: (St sa) (a->Stsb) >Stsb
(‘pind‘) £ g = \st0 = let (result,stl) = f stO in g result stl

return :: a -> St s a
return r = \s = (r,s)

bind is a kind of ‘flipped’ function composition, except that the subsequent function can
‘react’ to the result of the first computation. return leaves the state untouched, and returns
it as well as its argument value. These two higher order functions are extremely useful as
glue of computations that return additional information, as we have also seen in seqList.
You encounter it typically in combination with lambda abstraction, in which you use the \ to
give a name to the result of the first computation, and continue with the second computation
that can use that name during its computation.

10 StdMisc

The smallest module of StdEnv is StdMisc, which defines two functions that are useful to
indicate error-conditions in a program:

abort :: !{#Char} —> .a

10 STDMISC 21

undef :: .a

As you can see from their types, they can be applied in any context. abort msg, when
evaluated, prints msg and aborts the computation of the entire program, while undef simply
aborts without an additional message. Use these functions to cover unexpected cases in your
code.

	Roadmap
	An overloaded API
	StdOverloaded
	StdClass

	Do I have to worry about !, *, ., and u:?
	Strictness annotations
	Uniqueness annotations

	Modules for basic types
	StdBool
	StdInt
	StdReal
	StdChar
	StdFile
	Managing files
	Read-only files
	Read-write files

	Working with lists
	List notation
	ZF-expressions
	More ZF expressions
	StdList: operations on lists
	I want to compare lists:
	I want to know how many elements a list has:
	I want to find an element of a list:
	I want to select an element of a list:
	I want to build a shorter list:
	I want to build a bigger list:
	I want to modify a list, but retain the number of elements:
	I want to divide lists:
	I want to create a list:
	I have a list and want to reduce it to a single value:

	StdOrdList: operations on sorted lists

	Working with arrays
	Array notation
	Array manipulation

	Working with texts
	Working with tuples
	StdFunc
	StdMisc

