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Abstract. One commonly has to deal with all sorts of data sources such
as memory, files, and databases when developing complex applications.
Different kinds of data sources have different properties and realisations
and therefore typically provide different interfaces for storing and re-
trieving data. As a consequence, the code one writes in an application
depends on the actual resource used, which leads to non-reusable code
and huge refactoring effort in case one decides to store the information
differently.

In this paper we propose to use an abstract data type called uniform
data sources (UDS) which makes it possible to deal with all kinds of
different data sources in a uniform way. UDSs enable programmers to
separate the definition and usage of data sources, and provide a uniform
interface resulting in highly reusable code. UDSs are composable: new
data sources can be defined in terms of existing ones. Reading and writing
to a UDS maybe of different type which can be used to statically enforce
complex access control, allowing to restrict what components can read
and write to what is necessary for their functionality. Full-access, read-
only access, write-only access are special cases of this mechanism. More
complex access restrictions can be defined as well. We have implemented
a UDS library for Clean which is successfully used in the iTask system
and applied in iTask applications.

1 Introduction

Complex applications, such as for instance multi-user web applications, have
to deal with a lot of different kinds of data sources. Data might be stored in
databases for a long term, while other data might only be needed for a short
duration for accumulating a result which is not needed anymore after it is pro-
cessed. Furthermore, applications probably use meta data to handle the different
users and processes currently performed.

Different kinds of data sources (memory, files, databases) typically use dif-
ferent mechanisms to retrieve and store data. As a consequence, the interfaces
which are provided differ and depend on the type of data source being used. The
code one has to write to access a certain kind of data source is therefore com-
monly not reusable. When the data is stored differently, the corresponding code



has to be adjusted. This may require much effort, especially if in the application
logic the definition and the use of the data sources are intertwined.

To avoid this situation the two concerns, defining what a data source is and
how it is used, should be separated. In this paper we propose uniform data
sources (UDS) as a uniform way for dealing with different kinds of data sources.
We furthermore want to restrict the access provided by UDS, meaning that we
want to be able to restrict the type of data which can be read or written. This
has two advantages. It ensures that certain data cannot be changed by mistake
and fewer assumptions need to be made about the context in which a piece of
code is used.

This leads to highly reusable code and allows for a layered software archi-
tecture. When using a data source in a higher level layer only has to know that
there is a source providing and receiving information of a certain type, com-
pletely abstracting from where the data is actually stored and how access to it is
realised. On the other hand, one needs to define what reading and writing data
actually means in lower layers, in such a way that one can completely abstract
from the way the data is actually being used.

We use an abstract data type and the expressive power of a functional lan-
guage to achieve this goal. The uniform data source references introduced in the
paper have the following advantages:

1. UDSs are uniform, i.e. they can represent arbitrary kinds of data storages,
like memory, files or databases, and even arbitrary combination of data
sources. They make it possible that all data sources can be used in the
same way, even though the actual operations are mapped to e.g. operations
on memory, or on XML encoded files. Actually, even data sources other
than data storages can be represented. For instance, it is possible to create
a data source providing a stream of random numbers, or it can be a sensor
to measure the current temperature.

2. Access control is statically enforced by the type system. The type of data read
and written can be different. This makes read-only sources, but also more
complex access restrictions possible. For example, it is possible to create
a data source providing a list of appointments of several people, but only
allowing to update the appointments of one particular person.

3. Data sources are composable. Basically this means that it is possible to create
new data sources building on existing ones. Either functional projections can
be used to change the type of data read or written or multiple data sources
can be combined to a new one. This makes is possible to reuse code even when
information is organised in a different way, as long as there is a functional
mapping between the provided and required data sources.

The UDS concept is generally applicable. It has been implemented in Clean
and is offered as a general library such that it can be used in any (Clean)
application. It has proven to be very powerful in combination with the iTask
system [14] that is used for developing multi-user distributed applications. In
such applications typically many different data sources are being used (shared
memory, files, databases, time, date, logged-in users, JSON encoded client server



communication) which now can all be addressed in a uniform way. UDSs have
become one of the pillars of the iTask system and UDSs are used in large iTask
applications such as described in [10] and [11].

The remainder of this paper is organized as follows: The two concerns usage
and definition are discussed in detail in Sections 2 and 3, respectively. We use
the functional language Clean for code examples. The semantics of the proposed
UDSs are defined in Section 4. Our approach can in principle also be used for
shared data sources in a concurrent environment. This is explained in Section 5.
Related work is discussed in Section 6 and conclusions are drawn in Section 7.

2 Using Uniform Data Sources

This section deals with the first of the two concerns discussed in this paper.
From the perspective of a user of a UDS, the most important property of a UDS
is that it allows to abstract from the actual definition of a data source. This
can be achieved by using an abstract data type functioning as a reference to the
actual source. The reference itself cannot be inspected and only a pre-defined
set of operations can be performed on it, as defined below and in Section 3.

UDSs provide access control. This basically means that what can be read
from a UDS is not necessarily the same than what can be written. Each UDS
therefore has two type parameters indicating the type of data which can be
read from and can be written to the source, respectively. Concretely, a UDS is
represented by the abstract type RWUDS:

: RWUDS r w

The common case that values of the same type can be read and written is a
special case with r = w. We use the type synonym UDS for this. It is also possible
to express read-only and write-only data sources as special cases, where the type
Void is used to express the inability to write c.q. read':

:: UDS a:==RWUDS a a
:: ROUDS r :==RWUDS r Void
:: WOUDS w:==RWUDS Void w

Basic operations provided on a UDS are for reading (get) and writing (put)?:

get :: (RWUDS r w) *World — (r, *World)

put :: w (RWUDS r w) *World — *World

To obtain access to the outside world, Clean uses uniqueness typing instead of a
monadic approach [1]. All side-effecting functions work on a uniquely attributed
(%) type World. The functions get and put look rather straightforward, yet arbi-
trarily complex data structures, possibly stored in different media, can be read
and written with them in one go.

Ezxample 1. As running example in this paper we look at a typical software
component which is part of a web application. It allows users to respond to an

! Void is Clean’s unit type and:==denotes a type synonym.
2 In Clean notation the function get has two and put has three parameters.



appointment invitation. It is part of an agenda application, where users can sug-
gest an appointment and invite a number of other users. The users can respond
to this invitation by accepting or rejecting it. To make this decision, informa-
tion about the appointment has to be provided to the user. This includes a
description of the appointment, who initiated it and current responses of other
users.

First, we define a record type Invitation which contains all the information
needed for inviting a user:

: Invitation =

{ description :: String, createdBy :: UserDescription

, when :: DateTime, timeUntil :: TimeInterval

, ownResp :: ParticipantResp, otherParticipants :: [(UserDescription, ParticipantResp)] }
:: UserDescription = { firstName :: String, lastName :: String }

:: ParticipantResp = NoResponse | Accepted | Rejected String | Tentative String

An Invitation to an appointment obviously includes a date and time and how
much time there is to respond. To display information about the users being
invited, UserDescriptions are needed. To keep it simple they only contain the
user’s names. The response from an invited user to the invitation is represented
by ParticipantResps. If not accepting an invitation the user can input a string
containing an explanation of the reason for this.

We assume that the data which plays a role in this example, is stored in
different media. The data representing the invitation is constructed in memory
of the application. But to accomplish this, part of the information such as the
descriptions of the users invited need to be retrieved from a database, while the
current date and time is obtained from the operating system.

When a user responses to an invitation, we want that only that part of
the invitation can be changed. We can realise this by offering a UDS of type
RWUDS Invitation ParticipantResp, such that the information of type Invitation can
be read with one get and displayed after which the response of type ParticipantResp
can be written with a put.

3 Defining Uniform Data Sources

To make it possible to read and write complex data from multiple sources in
one go, we combine the different data sources involved in a layered way. Figure 1
illustrates a possible layered architecture for our running example. In this layered
architecture we distinguish creation of basic data sources, and offer combinators
to compose data sources from others.

3.1 Creating Basic Uniform Data Sources

When a UDS is created, it is defined what reading and writing of the data of
that particular source actually means. This means that two functions have to
be provided, one for reading, one for writing. Given these two functions, a UDS
can be created using the following function:

createUDS :: (*World — (r,*World)) (w *World — *World) — RWUDS r w
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Hence, a uniform data source can simply be created by defining how the data can
be obtained from and has to be stored back to the outside world. The complexity
of these two functions depend on the actual medium where the data is stored.
Any thinkable UDS can be created in this way.

To make life easier, the programmer can make use of a number of pre-defined
functions we have defined in the library. One very simple example is a UDS
providing a constant value:
constUDS :: a — ROUDS a
constUDS v = createUDS (Aworld — (v,world)) (A_ world — world)

To store information in a file, for instance, the following library function is
provided:

£ileUDS :: Path (String — a) (a — String) — UDS a

The only thing the programmer has to provide is a path, and an encode and a
decode function. Data sources which do not behave like ordinary data stores are
provided as well:

curDateTime :: ROUDS DateTime // the current time

random :: ROUDS Int // a stream of random numbers
null :: WOUDS a // thrash can, writing has no effect (like Uniz /dev/null)



In the iTask system, UDSs are used to provide domain specific data sources,
such as data sources for dealing with its internal administration, like for the
management of the iTask users:

currentUser :: ROUDS User
allUserDescriptions :: UDS [(User,UserDescription)]

The type User is an abstract type representing a user of the system in some
way, for instance by an identification number. This allows to abstract from the
description of users which are provided by another data source.

These examples show that UDSs do not have to be restricted to data storages.
A data source can also be for instance the current time or temperature. Actually
each provider of data can be seen as a uniform data source and defined as such.

3.2 Uniform Data Source Combinators

UDSs cannot only be defined in terms of basic operations, but also as composition
of other UDSs. In this way a layered architecture can be achieved.

Projections It has already been shown that access control can be achieved
using different types for data read and written. For some data sources, such as
the current time, it is obvious that access restrictions are needed. However, for
software engineering reasons, one also might want to change the way data of
an existing data sources can be accessed. For this purpose, projection functions
which change the read and write type of a data source, can be used:

(>7@) infixl 6 :: (RWUDS r w) (r — rf) — RWUDS r‘ w
(>!@) infixl 6 :: (RWUDS r w) (w‘ r — Maybe w) — RWUDS r w°
With the >7@ operator, the read type of a UDS can be changed by providing
a function from the old to the new read type. With the >!@ operator, the type
to be written can be changed. A more sophisticated function has to be given
here since values of the write type might contain less information than that of
the read type. The data source’s current value might therefore be necessary to
construct a value of the old write type. Furthermore, writing is optional.
Because pure functional projections are used to map values to a different
type, the behaviour of data sources after projection is not changed for the outside
world.

Ezample 2. Turning a data source in a read-only one is a special case of pro-
jecting the write type:

toReadOnly :: (RWUDS r w) — ROUDS r
toReadOnly uds = uds >!@ (A_ _ — Nothing)

A combinator for projecting both types of a data source can simply be derived:

(>7'@) infixl1 6 :: (RWUDS r w) (r — r‘, w‘ r — Maybe w) — RWUDS r‘ w‘
(>?'@) uds (pr,pw) = uds >!@ pw >7Q@ pr



Our >?'@ combinator is a more general case of a functional lens as introduced
by Hoffman et al. [2]. A lens is a well known method to update only a part of
a larger data structure. When r = w and writing is obligatory, the type of >?1@’s
first argument becomes (s — v, v s — s) which is a simple get/set notation of
a lens.

Example 3. A data source containing a tuple can be changed into a data source
which only allows to access the tuple’s first element using a simple lens:

fstlens :: (UDS (a,b)) — UDS a
fstLens tuple = tuple >7!@ (fst, Ax (_,y) — Just (x,y))

Example 4. We finally come back to our running example. Assume we have
a store for a single invitation. Access control can be achieved by applying a
write projection to the UDS, turning it into a UDS of the type required by the
component described in Example 13:

restrWriteAcc :: (UDS Invitation) — RWUDS Invitation ParticipantResp

restriiriteAcc uds = uds >!@ (Aresp inv — Just {inv & ownResp = resp})

This example illustrates a combination of both concerns. First, the projection
uses an existing UDS abstracting from how the data is actually stored. Second,
the projection defines a UDS which is then passed to the layer actually using it.

Static Composition Projection provides a powerful way to provide data of a
certain type abstracting from what kind of data is actually stored. It still has
the restriction that all data must be retrieved from one single source. One might
want to provide a data source, which actually combines a number of existing
sources. To achieve this a combinator for composing two data sources (> is
introduced:

(>~) infixl 6 :: (RWUDS rx wx) (RWUDS ry wy) — RWUDS (rx,ry) (wx,wy)

Ezample 5. A concatenation operation for two read-only lists yielding a new
single list can be defined like this:

concat :: (ROUDS [a]) (ROUDS [a]) — ROUDS [a]
concat x y = (x >< y) >?!e (A\(x,y) = x + y, A_ _ — Nothing)

Composition can be applied repeatedly to build arbitrary large composed data
sources. Since the resulting type is a RWUDS again, composition is completely
transparent for the user. Internally, reading and writing is performed from left to
right. Composition makes it possible to combine different kinds of data sources.
An example of a composed source using different kinds of storages is given in
Figure 2.

The combination of composition and projection is very powerful. Our com-
binators are powerful enough to put for instance a symmetric lens [7] between

two data sources?:

3 The notation {rec & field = newValue} updates a field of a record.
4 A simple notation without complement (see [7]) is used here for pragmatic reasons,
without consequences for the expressiveness.



Fig. 2: Composed sources (C) consisting of basic sources (B) using different media

symLens :: (ab — b) (ba — a) (UDS a) (UDS b) — (UDS a, UDS b)
symLens putr putl udsA udsB = (newUdsA, newUdsB)
where udsBoth = udsA >+ udsB
newlUdsA = udsBoth >?!@ (fst, Aa (_,b) — Just (a,putr a b))
newUdsB = udsBoth >?!@ (snd, Ab (a,_) — Just (putl b a,b))

Such lenses are used to keep two data sources consistent if only one of them is
changed. Type of the arguments and resulting sources remains the same, but a
connection between the sources is established. For the user of such a data source
this is completely transparent.

Ezample 6. In our running example, one would probably want store the infor-
mation about the planned meeting and accepted invitations. Assuming there is
a store for that:

storedInv :: UDS StoredInv

: StoredInv = { description :: String, createdBy :: User
, datetime :: DateTime, participants :: [(User, ParticipantResp)] }

The time until the event is not stored as it has to be determined dynamically.
In the store it is administrated which users have accepted the invitation so
far. There is no distinction between other participants and the response which
can be updated as this depends on the current user. References of type User
are used instead of descriptions. Those have to be retrieved from the already
discussed source allUserDescriptions. In this way it is ensured that any change
in the user database is immediately reflected. We assume there is a function
toDescr :: User [(User,UserDescription)] — UserDescription to replace a reference
of type User by the corresponding description.

From storedInv together with the current time and the user database a UDS
of the type required by the component described in Example 1 can be created:

invitation :: RWUDS Invitation ParticipantResp
invitation = (storedInv >+< curDateTime >+< currentUser >+< allUserDescriptions)
>?1@ (projR,projW)

projR :: (((StoredInv, DateTime), User), [(User,UserDescription)]) — Invitation
projR (((inv, curDateTime), curUser), descrs) =
{ description = inv.description, createdBy = toDescr inv.createdBy descrs
, when = inv.datetime, timeUntil = inv.datetime - curDateTime
, ownResp = hd [r \\ (u,r) ¢ inv.participants | u== curUser]
, otherParticipants = [(toDescr u descrs, r) \\ (u,r) < inv.participants | u # curUser] }

projW :: ParticipantResp (((StoredInv, DateTime), User), [(User,UserDescription)])
— Maybe (((StoredInv, Void), Void), [(User,UserDescription)])
projW resp (((inv, _), curUser), users) = Just (((
{inv & participants = [(curUser,resp) : filter (A(u,_) — curUser # u) inv.participants]}
, Void), Void), users)



The write projection projW stores the invitation response at the proper place in
the stored invitation. A possible previous response of the current user is outdated
and filtered out of the list and the new one is added in front.

Dynamic Composition & Projection Core Combinators There are sit-
uations in which static composition is not desirable. The combination of first
combining UDSs providing all information possibly needed and restricting ac-
cess using projections is actually powerful enough to cover virtually all cases,
but this solution is potentially highly inefficient. The UDS allUserDescriptions for
instance gives a list of all user descriptions. This becomes inefficient if there is a
large number of users in the system and one is interested in only the descriptions
of some of them. A function for generating a UDS efficiently retrieving the de-
scription of a given user can be defined. This function can for example perform
an efficient database query retrieving only the user description of the user given:

userDescription :: User — UDS UserDescription

The problem is that this function cannot be used together with the combinators
discussed so far, since they require a UDS and not a function generating one.

This can be solved by combinators allowing for dynamic composition and
projection. We consider those combinators as core combinators as all previously
defined combinators can be expressed using them. The core read combinator >7>
first reads a UDS and uses its current value to dynamically compute another UDS
which’s value is given as result. As before, the write type remains unchanged:
(>7>) infixl 6 :: (RWUDS r w) (r — (RWUDS r‘ wx)) — RWUDS r‘ w

For writing there is a more general core combinator >!>, too:
(>!>) infixl 6 :: (RWUDS r w) (w‘ — RWUDS r‘ wx, w‘ r‘ — [WriteUDS]) — RWUDS r w‘

: WriteUDS =3r w: Write w (RWUDS r w)

As before, writing possibly means that one first has to read data since the struc-
ture to write may contain not enough information to determine where to write
it. In analogy with >?>, the value to write is used to determine a UDS to read
from (first tuple element of second argument). This is quite flexible because in
this way the write combinator does neither depend on nor change the read type
of the UDS given as first argument. The value read from the dynamically deter-
mined UDS and the value to write are used to dynamically compute a number
of write operations on arbitrary many UDSs (second tuple element of second
argument). To make it possible to combine UDSs with different write types in
one list, the type WriteUDS is used. It hides both the read and write type of a
UDS using existential quantification.

Example 7. The core combinators can be used to define a UDS providing the
current user’s description in an efficient way, given the UDS currentUser and the
function userDescription:

currentUserDescription:: UDS UserDescription
currentUserDescription =
currentUser
>7> userDescription
>I> (const currentUser, Adescr curUser — [Write descr (userDescription curUser)])



The order in which both combinators are applied to the UDS does not matter.
As discussed, the combinators are designed in such as way that they depend on
and change solely either the read or the write type.

Ezample 8. Tt is finally shown how the UDS for the running example can be
defined without the need to read all user descriptions:

invitation :: RWUDS Invitation ParticipantResp
invitation = (storedInv > curDateTime >+ currentUser) >7> readR >!> (readW, write)

readR :: ((StoredInv, DateTime), User) — RWUDS Invitation (Void, UserDescription)
readR ((inv, curDateTime), curUser) =
( mapList inv.participants (A(u,r) — userDescription u >+< constUDS r)
>
userDescription inv.StoredInv.createdBy )
>?@ A (participants, creator) —

{ description = inv.description, otherParticipants = participants
, when = inv.datetime, timeUntil = inv.datetime - curDateTime
, createdBy = creator, ownResp = hd [r \\ (u,r) < inv.participants | u==curUser]| }

readW :: ParticipantResp — RWUDS (StoredInv, User) (StoredInv, Void)
readW _ = storedInv >+ currentUser

write :: ParticipantResp (StoredInv, User) — [WriteUDS]
write resp (inv, curUser) = [ Write { inv & participants =
[(curUser,resp) : filter (A(u,_) — curUser # u) inv.participants] } storedInv |
The function mapList is an auxiliary combinator, which can easily be defined
using the concat combinator of Example 5:

mapList :: [a] (a — RWUDS r w) — ROUDS [r]
mapList 1 f = combine 1 (constUDS [])
where combine [] uds = uds

combine [e:1] uds = combine 1 (concat uds (toReadOnly (f e >?@ Ax — [x])))

4 Semantics

In this section we define the semantics of uniform data sources. We use Clean
code as formalism to give the semantics. This has the advantage that the be-
haviour is defined unambiguously while it also gives a good hint for an actual
implementation. Such executable semantics have already been used to define the
behaviour of the iTask system earlier [8, 14].

Implementation details we have abstracted from are the following. For sim-
plicity reasons we define all the operations on the *World environment. In the
actual implementation operations are overloaded such that different environ-
ment can be used. For every concrete media being used (memory, file, database)
one needs to have primitives for reading and writing from that media. Depend-
ing on the kind of media used, the implementation effort can be straightfor-
ward but it can also be very complicated involve a lot of work when efficiency
is a concern. We abstract from all this here in the semantics and assume that
readFromMedia :: *World — (r,*World) and writeToMedia :: w *World — *World are de-
fined for any type and any media. Another simplification is that we do not deal
with error handling and assume operations always succeed.



4.1 Basic UDSs

We first give the semantics of basic UDSs. A RWUDS is an algebraic data type,
defined as follows:

: RWUDS r w = BasicUDS (*World — *(r,*World)) (w *World —» *World) |

In the algebraic data type the data constructors indicate with which type of UDS
we are dealing with: a basic one or a composed one. Basic UDSs are represented
by the constructor BasicUDS, the other options are explained below.

The create function creates a basic UDS and simply passes its arguments to
the constructor:
createUDS :: (*World — (r,*World)) (w *World — *World) — RWUDS r w
createUDS readF writeF = BasicUDS readF writeF
The basic operations get and put can now straightforwardly be defined for the

case that we have to deal with a basic UDS:
get :: (RWUDS r w) *World — (r,*World)
get (BasicUDS read _) world = read world

put :: w (RWUDS r w) *World — *World

put w (BasicUDS _ write) world = write w world

The operations become more complex for the composed cases discussed in the
remainder of this section.

4.2 Core Combinators

All compositions can be expressed in terms of two basic combinations, as already
discussed. The semantics given here and the actual implementation are identical.

:: RWUDS r w = BasicUDS (*World — *(r,*World)) (w *World — *World)
| Irx wy: ComposedRead (RWUDS rx w) (rx — RWUDS r wy)
|3r¢ w' w': ComposedWrite (RWUDS r w‘) (w — RWUDS r‘ w‘‘) (w r‘ — [WriteUDS])

: WriteUDS =3r w: Write w (RWUDS r w)

The two additional constructors, ComposedRead and ComposedWrite representing read
and write composition as discussed in Section 3.2. The types of all intermediate
results are hidden using existential type quantification.

The core combinators do nothing more than passing their arguments to those
constructors:
(>7>) infixl 6 :: (RWUDS rx wx) (rx — RWUDS ry wy) — RWUDS ry wx
(>7>) uds read = ComposedRead uds read

(>!>) infixl 6 :: (RWUDS r w‘) (w — RWUDS r‘ w‘‘, w r‘ — [WriteUDS]) — RWUDS r w
(>!>) uds (read,write) = ComposedWrite uds read write

The get and put operations have to be extended to cover the two new cases. We
start with get®:

get (ComposedRead uds cont) world
# (x, world) = get uds world
# (y, world) = get (cont x) world
= (y, world)
get (ComposedWrite uds _ _) world = get uds world

5 In Clean the # denotes a let.



In the case the UDS is a read composition, the original UDS is read first by
invoking get recursively, then the UDS resulting from the continuation function
is read. The case for write composition is trivial, since the behaviour is not
affected by read composition.

The put operation has to be extended similarly:

put w (ComposedRead uds _) world = put w uds world
put w (ComposedWrite _ readOp writeOp) world

# (r, world) = get (readOp w) world

# writes =writeOp w r

= seqSt (A (Write w uds) — put w uds) writes world

4.3 Derived Combinators

All derived combinators used in this paper can be expressed in terms of the
core combinators. The read and write projection can be expressed by the core
combinators in this way:

(>7@) infixl 6 :: (RWUDS r w) (r — r‘) — RWUDS r‘ w

(>7@) uds p = uds >7>Ar — constShare (p r)

(>!e@) infixl 6 :: (RWUDS r w) (w‘ r — Maybe w) — RWUDS r w‘

(>!@) uds p = uds >!> (const uds, Aw‘ r — maybe [] (A\w — [Write w uds]) (p w‘ r))

Static composition can be expressed by a combination of the read and write
combinator:

(>) infixl 6 :: (RWUDS rx wx) (RWUDS ry wy) — RWUDS (rx,ry) (wx,wy)
(>+<) udsx udsy = (udsx >7>Arx — udsy >?70 Ary — (rx,ry))
>I> (const (constShare Void), A(wx,wy) _ — [Write wx udsx, Write wy udsy])

5 Towards Shared Uniform Data Sources

As explained before, UDSs have been implemented and are offered in a special
Clean library. The library is general applicable and can be used for the de-
velopment of any (Clean) application. The library is heavily used in the iTask
system. The iTask system offers a domain specific language for the development
of distributed multi-user web-applications. iTask applications are used in prac-
tice in the home heath care domain (see [15]) while larger applications are being
prototyped (see [10] and [11]).

In both the iTask system itself as well as the applications made with it,
many different data sources are commonly being used, and UDSs turned out
to be very helpful. However, UDSs are here not only successfully being used to
abstract from the concrete data sources being used, they also turned out to be
very useful for defining data which is being shared between the different tasks
one is working on distributively. This specific use is rather straightforward to
accomplish here because of certain characteristics of the iTask implementation.
No synchronisation of operations on data shared between tasks is necessary,
because task evaluation is done single-threadedly and all data sources are under
the exclusive control of the iTask server. Hence, atomic access to such UDSs is
guaranteed.



We have extended the UDS library to support shared use of UDSs for the
general case where applications do not have exclusive control over the data
sources being used. However, this only works for certain data sources. When
sharing data between arbitrary applications, synchronisation is crucial. A first
reason is that one might want to perform several operations on a number of
UDSs atomically. The most important reason is that when using a UDS one
should be able to completely abstract from whether it is a composed one or a
basic one. A single operation on a UDS should always be one atomic action for
the outside world no matter how it is actually constructed.

For certain types of data sources, this is hard to realise. First, synchroni-
sation mechanisms of several kinds of data storages have to work together and
need a uniform interface. It is not possible to use the transaction mechanism of
data stores if one wants to achieve an atomic operation on multiple of them at
the same time. This is only possible with more low level primitives like locking
and unlocking, which possibly excludes data storages not supporting this kind
of primitives. Excluding data storages not supporting sufficiently powerful syn-
chronisation mechanisms might be a price we have to pay for getting a uniform
interface.

The implementation making use of those locking primitives has to be able to
deal with the dynamic nature of UDS composition, without introducing dead-
locks. Software transactional memory (STM) [6] provides a solution for this. We
implemented STM for UDSs for which the basic implementation supports a sim-
ple lock and unlock operation. This works fine, but we have not been able yet
to measure the performance of this approach compared to using the transaction
mechanisms provided by the data storages themselves.

The most severe problem of guaranteeing atomic access to a UDS is that not
always clear what it semantically means when certain data sources are being
used. For instance, what does it mean if we atomically want to read a UDS con-
taining the current time as one of its components? Which time should we use?
To extend the semantics of STM such that those kind of sources can be rep-
resented by our abstraction, while still providing atomicity guarantees, remains
future work.

So, we have an implementation which supports shared use of UDSs between
arbitrary applications. Atomicity is guaranteed using STM techniques in the
implementation. It is not always as efficient as it could be and it is also not always
clear how to handle special cases like reading the time and current temperature.
More research is needed to solve these issues.

6 Related Work

One area of related work are query languages allowing to abstract from the actual
data storage. Those languages however assume that data is stored in a certain
format. XML-QL [4] is an example for a language to retrieve data from and
generate new XML documents. In the context of relational data, a lot of work
has been done about embedding database accesses into programming languages.



The technique of writing queries in a functional language and then compile
it to SQL was pioneered by Kleisli [16]. Other approaches are HaskellDB [9]
and Database-Supported Haskell [5]. Another more high-level approach allows
to completely abstract from which queries are done, by generically mapping
databases to types based on a data model [12]. The goal of all those solutions
is to let programmers abstract from performing database access and provide
type safety. The work aims at accessing tables storing collections of records in
databases.

The UDS approach allows to work on arbitrary types, the data provided by
an UDS could for instance be a tree. This also requires a more flexible way of
defining data accesses and performing operations, based on arbitrarily complex
functions and dynamic composition. The disadvantage of the flexible UDS ap-
proach is that it does not allow for optimisations, as performed by some of the
above mentioned database languages. However, special query operations for data
stored in a restricted structure using a certain database system, could be built
on top of the flexible UDS primitives.

The most crucial difference with the mentioned work on integrating data
access into programming languages is that UDS aims at providing a composable
abstraction for data sources, allowing to structure software in a layered way and
provide static access control.

An approach to provide uniform data sources which is more similar to our
concept of UDSs is LIN@ [13]. It provides a solution for abstracting from the
actual implementation of a data source. Supported data sources are not restricted
to databases, but can be objects from the host programming language or XML
data as well. Similar to the UDS abstraction the type IEnumerable<T> is used for
abstraction. Objects of this type are also composable using joins.

As for the discussed database languages LIN() works on collections only. UDS
composition is done using functions, together with the dynamic core combinators
this provides a greater flexibility. Static access control finally is not provided by
the IEnumerable<T> interface, data read and written is of the same type.

Links [3] combines database access, defining the server logic and the client
user interface of a web application in a single language. In this sense it is similar
to iTask in combination with UDSs. Task descriptions in iTask are however on
a much higher level, as they allow the programmer to abstract from the details
of user interaction. In the same way UDSs provide a higher level of abstraction,
as they can represent any kind of data source.

Lenses [2] can finally be seen as a theoretical concept underlying static pro-
jections on data sources. The static projection combinators for UDSs are more
flexible, partially because of pragmatic reasons. Not writing, for instance, is more
efficient than writing an unchanged value back. The main reason is that the con-
cept of using different read and write types requires more flexible projections.
The price of this flexibility is that well-formed lenses probably have more the-
oretical properties allowing to reason about composition. We however did not
explore the theoretical properties of UDS projections.



7 Conclusions & Future Work

We introduced uniform data sources, a way to abstract from concrete data
sources and compositions of them such that one can use them when writing
code in a uniform way. Code using data sources becomes highly reusable.

Due to the offered abstraction, the actual implementation is completely hid-
den for the user. The only information given is the type of the data which can
be read from and the type of the data which can be written to the data source.
Using two different types for reading and writing makes it possible to define
access restrictions statically. With the core combinators complex data combina-
tions can be defined and it is possible to compute the location of the actual data
dynamically.

The UDS concept can be implemented in any language and is general appli-
cable. It is implemented in Clean and available as library. It is successfully used
in practice in the task-oriented programming framework iTask.

UDS can also be used for shared data sources. Atomicity is guaranteed using
STM techniques in the implementation. However, the implementation only sup-
ports certain data types. More research is needed if one wants to be able to deal
with arbitrary data sources in an efficient way. Since the concept of UDSs tries
to capture all kinds of data sources it is difficult to guarantee atomicity for all
cases without scarifying efficiency. For certain data sources, such as the current
time, it is unclear what it means to atomically compose operations on them with
operations on other data sources. Another problem is that different implemen-
tations, for example different database system, use very different mechanisms to
enforce atomicity, which would have to be combined in some way.
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